坐标轮换的matlab程序,坐标轮换法matlab程序

该MATLAB程序展示了如何使用坐标轮换法进行优化计算,通过用户输入的精度要求和初始点,逐步迭代寻找最优解。程序首先沿e1方向搜索,然后沿e2方向搜索,不断更新解矩阵A,直到满足精度要求。整个过程涉及符号计算和方程求解,体现了现代设计方法在数值计算中的应用。
摘要由CSDN通过智能技术生成

现代设计方法及其应用matlab程序作业(7.18)

源程序:

%坐标轮换法

clear

e=input('输入精度要求e:');

X=input('输入初始点:');

syms t s

a=10*X(1,1)^2+106*X(2,1)^2+10*X(1,1)*X(2,1)+96*X(1,1)+100*X(2,1); k=1;

e1=[1;0];

e2=[0;1];

A=X; %A矩阵用于存储每一轮变换所得解

C=X+t*e1; %沿e1方向搜索

x1=C(1,1);

x2=C(2,1);

df=diff(10*x1^2+106*x2^2+10*x1*x2+96*x1+100*x2);

t=solve(df);

X=X+t*e1;

C=X+s*e2; %沿e2方向搜索

x1=C(1,1);

x2=C(2,1);

df=diff(10*x1^2+106*x2^2+10*x1*x2+96*x1+100*x2);

s=solve(df);

X=X+s*e2;

A=[A X];

b=10*X(1,1)^2+106*X(2,1)^2+10*X(1,1)*X(2,1)+96*X(1,1)+100*X(2,1); a=[a b];

B=A(:,k+1)-A(:,k);

while double(sqrt(B(1,1)^2+B(2,1)^2))>e

syms t s

C=X+t*e1; %沿e1方向搜索

x1=C(1,1);

x2=C(2,1);

df=diff(10*x1^2+106*x2^2+10*x1*x2+96*x1+100*x2);

t=solve(df);

X=X+t*e1;

C=X+s*e2; %沿e2方向搜索

x1=C(1,1);

x2=C(2,1);

df=diff(10*x1^2+106*x2^2+10*x1*x2+96*x1+100*x2);

s=solve(df);

X=X+s*e2;

A=[A X];

现代设计方法是一种综合应用计算机科学、数学、工程学等多个领域的设计方法,旨在实现高效、精确、可靠、可持续的产品设计和制造。 坐标轮换法是现代设计方法中的一种常用技术,可以应用于多个领域的优化问题,包括无约束优化问题。下面以最小化 Rosenbrock 函数为例,演示如何使用 MATLAB 中的坐标轮换法求解无约束优化问题。 Rosenbrock 函数是一个经典的无约束优化问题,其公式如下: $$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$ 该函数的最小值在 $(x_1, x_2) = (1, 1)$ 处,是一个具有窄而深的山谷结构的函数。 使用坐标轮换法求解 Rosenbrock 函数的最小值,可以按照如下步骤进行: 1. 初始化变量 $x_1$ 和 $x_2$,并设定迭代次数 $n$。 2. 进行 $n$ 次坐标轮换,每次都向右移动一位,并将最后一个元素赋值为当前的 $x_1$ 或 $x_2$。 3. 计算当前坐标轮换后的 $x_1$ 和 $x_2$ 对应的 Rosenbrock 函数值,取最小值作为当前的最优解。 4. 将最优解作为下一次迭代的初始值,重复步骤 2-3 直到达到设定的迭代次数。 下面是一个简单的 MATLAB 程序,用于求解 Rosenbrock 函数的最小值: ```matlab function res = coordinateRotationOptimization() % 使用坐标轮换法求解 Rosenbrock 函数的最小值 % 初始化参数 n = 1000; % 迭代次数 x = [-1, -1]; % 初始值 for i = 1 : n % 进行 n 次坐标轮换 x = circshift(x, [0 1]); % 向右移动一位 x(2) = x(1); % 将最后一个元素赋值为当前的 x1 % 计算 Rosenbrock 函数值,并取最小值 f1 = (1 - x(1))^2 + 100 * (x(2) - x(1)^2)^2; x(1) = x(2); % 将最后一个元素赋值为当前的 x2 f2 = (1 - x(1))^2 + 100 * (x(2) - x(1)^2)^2; if f1 < f2 x(2) = x(1); end end res = x; % 返回最优解 end ``` 该程序中使用了 MATLAB 自带的 `circshift` 函数进行坐标轮换,同时计算了每个坐标轮换后的 Rosenbrock 函数值,并取最小值作为当前的最优解。最终,程序返回的结果为 Rosenbrock 函数的最小值点 $(x_1, x_2)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值