python textrank_使用TextRank算法为文本生成关键字和摘要

本文介绍了如何利用TextRank算法从文本中提取关键字和摘要。首先讲解了PageRank的基本原理,然后展示了如何应用PageRank计算网页的重要性。接着详细阐述了TextRank在关键词提取中的应用,包括构建句子和单词的图,以及如何通过相似度计算得到关键短语。最后,文中还提到了TextRank4ZH库,并给出了一段Python代码示例,用于提取关键词、关键短语和摘要。
摘要由CSDN通过智能技术生成

TextRank算法基于PageRank,用于为文本生成关键字和摘要。其论文是:

Mihalcea R, Tarau P. TextRank: Bringing order into texts[C]. Association for Computational Linguistics, 2004.

先从PageRank讲起。

PageRank

PageRank最开始用来计算网页的重要性。整个www可以看作一张有向图图,节点是网页。如果网页A存在到网页B的链接,那么有一条从网页A指向网页B的有向边。

构造完图后,使用下面的公式:

S(Vi)是网页i的中重要性(PR值)。d是阻尼系数,一般设置为0.85。In(Vi)是存在指向网页i的链接的网页集合。Out(Vj)是网页j中的链接存在的链接指向的网页的集合。|Out(Vj)|是集合中元素的个数。

PageRank需要使用上面的公式多次迭代才能得到结果。初始时,可以设置每个网页的重要性为1。上面公式等号左边计算的结果是迭代后网页i的PR值,等号右边用到的PR值全是迭代前的。

举个例子:

上图表示了三张网页之间的链接关系,直觉上网页A最重要。可以得到下面的表:

结束\起始

A

B

C

A

0

1

1

B

0

0

0

C

0

0

0

横栏代表其实的节点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值