平面向量内积坐标公式推导_向量内积的坐标表示.ppt

向量内积的坐标表示

7.11向量内积的坐标表示 授课人:邱群灯 * 7.11 向量内积的坐标表示 向量的内积 a⊥b a · b=0 (判断两向量垂直的依据) 运算律: 1. 2. 3. 平面向量基本定理: 如果 是同一平面内的两个不共 线向量,那么对于平面内的任一向量a ,有且只有与一对实数 , 使 . 7.11 向量内积的坐标表示 ① _____ ② ______ ③ ______ ④ _____ 单位向量i 、j 分别与x 轴、y 轴方向相同,求 1 1 0 0 能否推导出 的坐标公式? 两个向量的内积等于它们对应坐标的乘积的和,即 7.11向量内积的坐标表示 (1)设a =(x,y),则 或|a |= . 性质 若设 、 则 即平面内两点间的距离公式. (2)写出向量夹角公式的坐标式,向量平行和垂直的坐 标表示式. 7.11向量内积的坐标表示 例题讲解 例1.设 , ,求 . 解: a 、b 夹角的余弦值? 7.11平面向量数量积的坐标表示 例2.已知 , , ,求证 是直角三角形. 证明:∵ ∴ 是直角三角形. 7.11 向量内积的坐标表示 例3.求 与向量的夹角为 的单位向量. 解:设所求向量为 ∵ a 与b 成 ∴ 又 ……② 联立解之: , 或 , ……① 另一方面 ∴ 7.11向量内积的坐标表示 练习: (1)已知 , 且 ,求 . (2)已知a =(4,2),求与a 垂直的单位向量. (3) 中, , ,求k 的值. *

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> <span style="color:#4d4d4d;">当前课程中博客项目的实战源码是我在 GitHub上开源项目 My-Blog,目前已有 2000 多个 star:</span> </p> <p> <span style="color:#4d4d4d;"><img src="https://img-bss.csdnimg.cn/202103310649344285.png" alt="" /><br /> </span> </p> <p> <span style="color:#4d4d4d;">本课程是一个 Spring Boot 技术栈的实战类课程,课程共分为 3 大部分,前面两个部分为基础环境准备和相关概念介绍,第三个部分是 Spring Boot 个人博客项目功能的讲解,<span style="color:#565656;">通过本课程的学习,不仅仅让你掌握基本的 Spring Boot 开发能力以及 Spring Boot 项目的大部分开发使用场景,同时帮你提前甄别和处理掉将要遇到的技术难点,认真学完这个课程后,你将会对 Spring Boot 有更加深入而全面的了解,同时你也会得到一个大家都在使用的博客系统源码,你可以根据自己的需求和想法进行改造,也可以直接使用它来作为自己的个人网站,这个课程一定会给你带来巨大的收获。</span></span> </p> <p> <span style="color:#4d4d4d;"><span style="color:#565656;"> </span></span> </p> <p> <span style="color:#e53333;"><span style="color:#e53333;"><strong>课程特色</strong></span></span> </p> <p> <span style="color:#e53333;"><span style="color:#e53333;"><strong> </strong></span></span> </p> <p> <span style="color:#4d4d4d;"><span style="color:#565656;"> </span></span> </p> <ol> <li> <span style="color:#565656;">课程内容紧贴 Spring Boot 技术栈,涵盖大部分 Spring Boot 使用场景。</span> </li> <li> <span style="color:#565656;">开发教程详细完整、文档资源齐全、实验过程循序渐进简单明了。</span> </li> <li> <span style="color:#565656;">实践项目页面美观且实用,交互效果完美。</span> </li> <li> <span style="color:#565656;">包含从零搭建项目、以及完整的后台管理系统和博客展示系统两个系统的功能开发流程。</span> </li> <li> <span style="color:#565656;">技术栈新颖且知识点丰富,学习后可以提升大家对于知识的理解和掌握,对于提升你的市场竞争力有一定的帮助。</span> </li> </ol> <p> <strong>实战项目预览</strong> </p> <p> <span style="color:#4d4d4d;"><span style="color:#565656;"><span style="color:#e53333;"><strong> </strong></span></span></span> </p> <p> <span style="color:#4d4d4d;"><img src="https://img-bss.csdn.net/202005150303066258.png" alt="" /><br /> </span> </p> <p>   </p> <p> <span style="color:#4d4d4d;"> </span> </p> <p> <span style="color:#4d4d4d;"><img src="https://img-bss.csdn.net/202005150305396930.png" alt="" /><br /> </span> </p> <p> <span style="color:#4d4d4d;"> </span> </p> <p> <span style="color:#4d4d4d;"><img src="https://img-bss.csdn.net/202005150305528842.png" alt="" /><br /> </span> </p> <p> <span style="color:#4d4d4d;"> </span> </p> <p> <span style="color:#4d4d4d;"><img src="https://img-bss.csdn.net/202005150306056323.png" alt="" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页