三个list合并_[LeetCode] 账号合并(强烈推荐!强烈推荐!强烈推荐!)

这篇博客探讨了一道LeetCode上的难题,涉及到账户合并。通过分析给出的示例,我们可以理解题目要求将具有相同邮箱地址的同名账户合并。文章介绍了三种不同的解决方案:集合操作、深度优先搜索(DFS)、广度优先搜索(BFS),以及并查集。每种方法都是通过建立账户间的关联,找出所有属于同一个人的邮箱地址。最后,将这些邮箱按字典顺序合并到一起,形成新的账户列表。
摘要由CSDN通过智能技术生成

07100b7809fbf63e6d74913fcbb4a7c2.png

写在前面的话:

题目链接:(https://leetcode-cn.com/problems/accounts-merge/),

这道题综合性极强,搞懂这一题,关于图方面的题就都会啦!大家一定要认真搞懂,涉及了图的深度遍历,宽度遍历,并查集..

题目描述:

给定一个列表 accounts,每个元素 accounts[i] 是一个字符串列表,其中第一个元素 accounts[i][0]名称 (name),其余元素是 emails 表示该帐户的邮箱地址。

现在,我们想合并这些帐户。如果两个帐户都有一些共同的邮件地址,则两个帐户必定属于同一个人。请注意,即使两个帐户具有相同的名称,它们也可能属于不同的人,因为人们可能具有相同的名称。一个人最初可以拥有任意数量的帐户,但其所有帐户都具有相同的名称。

合并帐户后,按以下格式返回帐户:每个帐户的第一个元素是名称,其余元素是按顺序排列的邮箱地址。accounts 本身可以以任意顺序返回。

示例:

Input: 
accounts = [["John", "johnsmith@mail.com", "john00@mail.com"], ["John", "johnnybravo@mail.com"], ["John", "johnsmith@mail.com", "john_newyork@mail.com"], ["Mary", "mary@mail.com"]]
Output: [["John", 'john00@mail.com', 'john_newyork@mail.com', 'johnsmith@mail.com'],  ["John", "johnnybravo@mail.com"], ["Mary", "mary@mail.com"]]
Explanation: 
  第一个和第三个 John 是同一个人,因为他们有共同的电子邮件 "johnsmith@mail.com"。 
  第二个 John 和 Mary 是不同的人,因为他们的电子邮件地址没有被其他帐户使用。
  我们可以以任何顺序返回这些列表,例如答案[['Mary','mary@mail.com'],['John','johnnybravo@mail.com'],
  ['John','john00@mail.com','john_newyork@mail.com','johnsmith@mail.com']]仍然会被接受。

注意:

  • accounts的长度将在[1,1000]的范围内。
  • accounts[i]的长度将在[1,10]的范围内。
  • accounts[i][j]的长度将在[1,30]的范围内。

思路:

首先,我们理解题意,有个列表,列表中每一个元素由人名和邮箱组成.有重名的可能是一个人,也可能不是一个人.我们通过他们是否有相同邮箱来判定到底是不是同一个人.目标:是缩减这个列表,使同一个人邮箱(按字典顺序)合并在一起.

接下来我们考虑方法,其实最容易的想的就是集合操作,就是说两个同名的邮箱有重叠部分说明就是同一人,我们合并起来.

另一种思考就是,用图.我们把同一个人的邮箱连起来,找一个人所有的邮箱,就是找到他的连通分量.所有,这里就有3种方法,dfs,bfs,并查集.

代码:

集合

def accountsMerge(self, accounts):
        from collections import defaultdict
        if not accounts:
            return
        lookup = defaultdict(list)
        res = []
        for account in accounts:
            name = account[0]
            email = set(account[1:])

            lookup[name].append(email)
            for e in lookup[name][:-1]:
                if e & email:
                    lookup[name].remove(e)
                    lookup[name][-1].update(e)
        for key, val in lookup.items():

            for tmp in val:
                res.append([key] + list(sorted(tmp)))
        return res

dfs

def accountsMerge(self, accounts):
        from collections import defaultdict, deque
        graph = defaultdict(set)
        email_to_name = defaultdict()
        for account in accounts:
            name = account[0]
            emails = account[1:]
            for email in emails:
                email_to_name[email] = name
                graph[emails[0]].add(email)
                graph[email].add(emails[0])
        # print(graph)
        visited = set()
        res = []
        def dfs(e):
            new_list.append(e)
            for t in graph[e]:
                if t not in visited:
                    visited.add(t)
                    dfs(t)
        for e in graph:
            if e not in visited:
                visited.add(e)
                new_list = []
                dfs(e)
                res.append([email_to_name[e]] + sorted(new_list))
        return res

bfs

def accountsMerge(self, accounts):
        from collections import defaultdict, deque
        graph = defaultdict(set)
        email_to_name = defaultdict()
        for account in accounts:
            name = account[0]
            emails = account[1:]
            for email in emails:
                email_to_name[email] = name
                graph[emails[0]].add(email)
                graph[email].add(emails[0])
        # print(graph)
        visited = set()
        res = []

        def bfs(e):
            ans = []
            q = deque()
            q.appendleft(e)
            while q:
                tmp = q.pop()
                ans.append(tmp)
                for t in graph[tmp]:
                    if t not in visited:
                        visited.add(t)
                        q.appendleft(t)
            return ans

        for e in graph:
            # print(e)
            if e not in visited:
                visited.add(e)
                ans = bfs(e)
                res.append([email_to_name[e]] + sorted(ans))
        return res

并查集

def accountsMerge(self, accounts):
        from collections import defaultdict

        f = {}

        def find(x):
            f.setdefault(x, x)
            if  x!= f[x]:
                f[x] = find(f[x])
            return f[x]

        def union(x, y):
            f[find(x)] = find(y)

        lookup = {}
        n = len(accounts)
        for idx, account in enumerate(accounts):
            name = account[0]
            email = account[1:]
            for e in email:
                if e in lookup:
                    union(idx, lookup[e])
                else:
                    lookup[e] = idx
        # print(f)
        disjointSet = defaultdict(set)
        for i in range(n):
            tmp = find(i)
            for es in accounts[i][1:]:
                disjointSet[tmp].add(es)
        # print(disjointSet)
        res = []
        for key, val in disjointSet.items():
            res.append([accounts[key][0]] + list(sorted(val)))
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值