代数余子式和余子式符号_高等代数教学笔记4:矩阵 II

可逆矩阵

现在我们做好了研究可逆矩阵的准备. 还是从方程组谈起吧. 对于线性方程组

这里, , , . 我们用两种方法解这个方程.

方法一. 作变量替换  , 则原方程组化为  . 如果能选择   使得   (此时自然有  ), 则  ,   就是解. 方法二. 当   时, 即   是一个非零常数时, 我们很容易得到  , 这本质上是在方程两边同乘以   的倒数. 由此得到启发, 对于一般情形, 我们可以在   两边同乘以一个矩阵   得到新的方程组  . 如果   (此时自然也有  ), 则可得方程组的解为 . 总之, 对于  , 我们希望找到    使得   或  . 首先解决一个问题. 问题 4.19 (1) 如果上述   同时存在, 则  . (2) 当   时, 上述   不可能同时存在. 进一步,   或   存在, 则一定不是唯一的. 对于问题 (1), 利用   的定义即可. 至于问题 (2), 利用问题 4.13 即可. 余下我们关注更有意思的情形, 即   是方阵. 利用行列式的乘积公式容易得到如下结论. 问题 4.20 称   为可逆矩阵, 如果存在   使得  . 则   可逆的必要条件是  . 看到   的条件, 我们应该能想到与之相关的重要结论——Cramer 法则. 如果   存在,   的第   列为  ,   的第   列为  , 于是有

这是一个线性方程组, 当  时解存在唯一, 也就是说

问题 4.21   这个条件是否充分, 即  可逆当且仅当  , 并且此时   的逆是唯一的.  上述讨论实际上还告诉我们如何求   的逆! 只需要求解方程组   即可. 这个方程组在讲解 Cramer 法则时遇到过. 不难看出, 它的解为

如果 , 于是  (对! 你没有看错:  与  的下标位置是反的!). 于是需要引入伴随矩阵:

75a69d7f3d68564645a9ce5cc5150ac7.png

有点别扭, 但这就是结果, 无法改变. 于是有

问题 4.22 设  . (1)  ; (2) 若  , 则   的唯一的逆矩阵为  , 记为  , 且  . 这个过程也是在告诉我们, 伴随矩阵的引入是自然而然的, 不是哪个人凭空想象出来的. 如果直接定义伴随矩阵, 让学生直接验证也可以得到上述结论, 但是这个过程不免令人产生疑问: 伴随矩阵是怎么想出来的? 知其然不知其所以然, 学生们不可避免地去死记硬背. 很多时候, 透过现象看本质的能力不是一朝一夕能练就的, 大部分学生们不具备这个能力, 哪怕现象与本质之间只隔一层窗户纸. 教师的一个很重要的工作是引导学生去捅破它, 引导学生多捅几次或许才能有些微效果. 问题 (2) 可以直接验证. 不过我们可以不需要计算且更一般的方法. 问题 4.23 设   为   上所有行列式不为零的  阶方阵的全体. (1)  ; (2) 若  , 则  , 且  ; (3) 设 ,  使得

则 , 即 .

上述结论告诉我们, 若   是   的逆矩阵, 则   可交换. 关于这一点, 以后我们会发现有更深层次的原因. 问题 4.24   是   的多项式, 即存在  , 使得  . 如果有这个结论,   与   自然可换了. 不过这个结论并不容易证明, 我们还有一段路要走. 注意到伴随矩阵与逆矩阵的关系, 我们可以把逆矩阵的相关结论照搬到伴随矩阵上. 问题 4.25 (1)  ; (2)   是   的多项式. 问题 (1) 可以直接计算   的代数余子式, 这需要 Binet-Cauchy 公式. 另一种方法或许更有启发性: 先证明   都可逆的容易情形, 一般情形可以可以利用扰动法, 即用   代替   得到结论, 再由此证明   也成立. 后一种方法还可以变化一下:   与   中的每一个矩阵元素都是多项式, 只要在“足够多”的点取值相同, 则这些多项式就是相等的.

初等变换

用伴随矩阵求逆矩阵在二阶的情形很方便也很容易, 不过多年的教学经验告诉我, 即使是这种简单情形, 很多学生一算就错. 每一次讲过伴随矩阵, 下一次课我都会找个机会让学生们计算某个二阶矩阵的逆矩阵. 仿佛是为了证明我的判断是正确的, 学生们每次都很配合, 不是代数余子式忘了符号, 就是放错了位置, 甚至有人根本就想不起来什么是伴随矩阵. 这种现象每次都出现, 不管你怎么强调. 对于   阶的矩阵, 求伴随矩阵的复杂度就比较大了, 我们需要计算一个   阶行列式和   个   阶行列式. 除非特殊情形, 我们一般不会采用这种方法. 不过计算行列式的过程还是会有启发性的. 一般来说, 我们计算行列式是通过初等行(列)变换: 第一类初等变换: 矩阵的两行(列)互换; 第二类初等变换: 以一个非零数去乘矩阵的某一行(列); 第三类初等变换: 把矩阵的某一行(列)的   倍加到另一行(列)等变换. 问题 4.26 第一类初等变换实际上可以由其他两类初等变换得到. 初等变换并不是仅仅用来计算行列式的, 线性代数的出发点是解线性方程组, 回顾一下解二元一次或三元一次方程组的过程就会发现, 我们采用的主要是消元法, 而消元法实际上就是对各方程进行加减, 也就是对系数矩阵作一些初等行变换变换. 神奇的事情是初等行(列)变换可以用矩阵乘法来实现! 首先考虑单位矩阵  , 经过一次初等变换得到三类初等矩阵:  第一类初等矩阵  : 互换   的第   行(或列)与第   行(或列).  第二类初等矩阵  : 以非零   乘   的第   行(或列).  第三类初等矩阵  : 把   的第   行 (或第  列)的   倍加到第   行 (或第   列). 问题 4.27 初等矩阵都可逆, 且其逆矩阵也是初等矩阵, 这与初等行(列)变换是可逆的相对应. 问题 4.28 设  , 用   阶(或   阶)初等矩阵从左边(或右边)乘   是对   进行相应的初等行变换(或列变换). 矩阵乘法遵循着``左行右列''的原则, 即左乘一个矩阵的效果是施行相应的行变换, 右乘的效果是施行列变换. 还有另外一个观点可以解释这一点. 对于线性方程组  , 我们考虑变量替换  . 依次取   为三类初等矩阵, 把得到的关于   的线性方程组的矩阵写出来看看. 而变量替换得到的方程组是  , 系数矩阵就是  . 这样就很清晰地看出   实际上是对   做了初等列变换. 利用转置, 就能很容易理解  是在作行变换. 不过, 为了解线性方程组, 我们一般只用行变换, 这样的好处是, 对于初等矩阵  , 方程组   与   同解, 我们可以进行适当的操作方程组更容易解. 问题 4.29 对  , 可以用一系列初等行变换把   化成阶梯型, 即有初等矩阵   使得   为阶梯型. 如果考虑变量替换, 我们又可以对   进行列变换, 从而有 问题 4.30 任意   都可以经过一系列初等行列变换变为标准形  , 即存在初等矩阵  使得

(为了省事, 我用分块矩阵的形式来写了. 早就想介绍分块矩阵, 担心学生们在矩阵乘法还没闹清时再被分块矩阵折磨得要死要活.)

这里有个问题: 问题 4.31   的标准形是唯一的吗? 换句话说, 这儿的   不依赖于初等变换的过程吗? 这个问题不容易看出来, 我们放到后面的分块矩阵中讨论. 如果   是可逆矩阵, 则  . 实际上, 从初等行变换的过程我们就可以发现: 问题 4.32 如果   可逆, 则我们只需要初等行变换就可以把   化成标准形  . 这个问题给出了求逆矩阵的方法. 若用一系列初等行变换   把   化成了  , 即有  . 于是  . 我们需要做的就是把这些初等行变换记录下来. 为此, 我们只需要把   和单位矩阵排在一起, 对   进行行变换  . 于是, 这些初等行变换把   化成   的同时也把   化成了  . 如果用列变换该如何操作?

一个小插曲

不过, 上课的时候我问了一个问题: 问题 4.33 由问题 4.30, 当   可逆时, 从这里如何看出只需要初等行变换就可以把   化成  ? 意料之中的事情出现了: 学生们蒙了! 很明显, 他们被这一长串的矩阵弄迷糊了. 他们应该明白矩阵乘法不满足交换律, 不过他们似乎忘了有些矩阵相乘是可交换的, 比如互逆的矩阵. 加个括号写成如下这个样子

不少学生才恍然大悟、如梦初醒.

不过, 一个意外收获是, 有个学生想到了一个有点麻烦的做法: 在上述标准形左边乘以  , 右边乘以  , 即

847ed7c7ee58d953dd056209744574f5.png

这样就把  逐一移到左边了. 这实际上是矩阵相似的观点, 是后面“线性变换”一章中的重要概念.

既然出现了相似, 自然也不应该浪费, 干脆算一点例子. 问题 4.34 设  ,   可逆, 求  ,  . 算完这个, 趁热打铁, 再算一题. 问题 4.35 设  , 求  .           算了几个例子, 学生们反应过来了, 这里的   中的各项数字竟然全都是 Fibonacci 数. 求 Fibonacci 数列的通项公式自然就需要求  . 这自然不好算, 不过如果能把   写成

的形式, 则

问题 4.36 如何求满足上述条件的  ?
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值