python基于摄像头的手势识别_基于python的kinect手势识别:hmm学习

本文探讨了使用Kinect和Python进行手势识别的方法。作者计划利用隐马尔可夫模型(HMM)通过无监督学习的方式训练手势数据,并采用Viterbi算法进行识别。文章还讨论了该方法是否可行、所需训练集数量、每个HMM的状态数以及是否可以实时运行等问题。
摘要由CSDN通过智能技术生成

我想用kinect在python中进行手势识别。在

在阅读了一些理论之后,我认为最好的方法之一是用隐马尔可夫模型(HMM)(baum-welch或其他EM方法)对一些已知的手势数据进行无监督学习,得到一组经过训练的HMM(我想识别的每个手势对应一个)。在

然后我会进行匹配最大对数似然的识别(用viterbi?)在训练集中使用HMM的观测数据。在

例如,我用kinect设备记录了一些手势的数据(右手坐标x、y、z)(打招呼、踢拳、用手打圈),我还做了一些训练:# training

known_datas = [

tuple( load_data('punch.mat'), 'PUNCH' ),

tuple( load_data('say_hello.mat'), 'HELLO' ),

tuple( load_data('do_circle_with_hands.mat'), 'CIRCLE' )

]

gestures = set()

for x, name in known_datas:

m = HMM()

m.baumWelch(x)

gestures.add(m)

然后,我执行max loglik对观察到的新数据进行识别,并选择之前保存的手势,其中包含每个训练的HMM的max loglik:

^{pr2}$

我的问题是:这完全是愚蠢的吗?在

一个真正的案例需要多少套培训?在

每个HMM有多少个状态?在

有可能实时进行吗?在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值