大家都学习过公约数与公倍数这样的概念,但是有很多人还是分不清楚最大公约数和最小公倍数。在国省考考试中这样的考点可能是单独出题目,也可能是在一些题目求解的过程中考查,这是一个基础且不是很难的考点。因此,我们会带着大家来学习区分他们的不同,并且掌握最大公约数和最小公倍数在解题中的应用。那么,我们先来了解基础的概念吧!
一、基本概念
1. 约数、倍数
如果一个自然数A能被自然数B整除,那么称A为B的倍数,B为A的约数。例如:10÷2=5,我们就称10是2的倍数,2是10的约数。所以倍数与约数是相对的关系。
2. 公约数、公倍数
如果一个自然数同时是若干个自然数的约数,就称这个自然数是这些若干自然数的公约数。如果一个自然数同时是若干个自然数的倍数,就称这个自然数是这些若干自然数的公倍数。例如:2是4、6、10这样数字的公共约数,20是4、5、10这样数字的公共倍数。
3. 最大公约数、最小公倍数
若干个数的公约数中最大的一个就是这些自然数的最大公约数。若干个数的公倍数中最小的一个就是这些自然数的最小公倍数。例如:8和12,两个数字的公约数有多个,比如1、2、4,其中最大的公约数是4。通常我们对于公约数的考查就是求解最大公约数,最小的公约数都是1,这样的求解意义不大。那么,8和12,这两个数字的公倍数也有很多,比如24、48、144等等,但是其最小的公倍数为24。通常考查的是最小公约数,因为我们也看到最大的公倍数是可以在24的基础上无限扩大倍数的,这样的问题没有意义了。
二、求解最大公约数与最小公倍数
在了解了这样三组基本概念之后,相信大家已经掌握了最大公约数与最小公倍数的含义,那么到底怎样找到几个数字的最大公约数或者最小公倍数呢?我们常用的方法是短除法,一起来学习吧。
1. 求解最大公约数
求解两个数字的情况:用短除号用质数做除法,直到两个商互质(即除了1之外没有其他公约数),最大公约数就是共有约数的乘积,即短除符号左边的数字乘积,最小公倍数就是短除号周围所有数字的乘积。24和36的最大公约数为2×2×3=12,最小公倍数为2×2×3×2×3=72。
2.求解最小公倍数
求解三个或者多个数字的情况:最大公约数是共有约数的乘积,例如24、30、36这三个数的最大公约数为2×2=4。最小公倍数的求解为商必须两两互质才结束短除,短除号周围的所有数值的乘积为最小公倍数,例如这三个数值的最小公倍数为2×2×3×2×5×3=360。
三、题目应用
例1:现在打算用一批正方形地砖铺满一块长24米,宽17米的空地,正方形地砖最大边长为多少?
【解析】根据题意,我们可以得知该空地的长24米需要用N个正方形铺满,同时宽17米也需要用同样的正方形M个铺满,则说明该正方形的边长是24和17的公约数,因为N、M这样的数值表示正方形个数一定是正整数,并且问题求解正方形最大的边长,因此为求解两数的最大公约数。又由于两数互质,则只有公约数1,所以此题答案为1米。
例2:甲每3天去图书馆一次,乙每8天去图书馆一次,3月1日这天两个人恰好在图书馆相遇,请问下一次两人相遇是在哪天?
【解析】根据题意,甲每3天去一次,经过了N个3天,同时乙每8天去一次,可能经过了M个8天,正好两人相遇,因为N、M表示个数为正整数,则说明经过的天数一定是3和8的公倍数,又问下一次相遇,则所求为3和8的最小公倍数,即为24天,经过24天的下一次相遇时间为3月25日。
例3:已知A、B两数的最大公约数为5,最小公倍数为60,则这两个数分别是多少?
【解析】在短除求解最大公约数的过程中,我们可以看到最小公倍数中含有最大公约数,则60÷5=12,12为这两个数除以最大公约数之后得到的两个商的乘积,并且这两个商是互质的,因此12=3×4,所求的两个数分别为5×3=15,5×4=20。