如何求解单边z变换_用单边Z变换解差分方程.ppt

本篇介绍了如何利用单边Z变换来解离散系统的差分方程,强调了单边Z变换在因果序列处理中的应用。内容包括:1) Z变换的位移特性;2) 用单边Z变换解差分方程的步骤;3) 离散系统的系统函数定义及稳定性条件;4) 频率响应的概念及其几何确定法。文中通过具体例子讨论了系统的稳定性,并探讨了数字滤波器的基本构成和设计方法。
摘要由CSDN通过智能技术生成

§8.7 用单边Z变换解差分方程 解差分方程的方法: (1)时域经典法 (2)卷积和解法 (3)Z变换解法 (一)复习Z变换的位移特性 若x(n)分别是双边序列、双边左移序列、双边右移序列时,它们的双边和单边Z变换是不同的: (1)双边序列的双边Z变换(p79-p83) (2)双边左移序列的单边Z变换 (3)双边右移序列的单边Z变换 (4)对于因果序列x(n) (二)用单边Z变换解差分方程的步骤和思路 x(n-r),y(n-k)均为右移序列 两边取单边Z变换 §8.8 离散系统的系统函数 一、定义: (1)系统零状态响应的Z变换与输入的Z变换之比 (2)系统单位样值响应h(n)的Z变换 (1)定义一:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下: (2)定义二:系统单位样值响应h(n)的Z变换 激励与单位样值响应的卷积为系统零状态响应 由卷积定理 二、对系统特性的影响 由极点分布决定系统单位样值响应 由极点分布决定系统稳定性 由零极点分布决定系统决定系统频率特性(§8.9) (1)由极点分布决定系统单位样值响应 极点分布对h(n)的影响 (2)由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即: 因果稳定系统的充要条件为 :h(n)是单边的而且是有界的。即: 因果 稳定 例:已知因果系统的系统函数如下: 试说明该系统是否稳定? 解: 例:已知系统函数如下,试说明分别在(1)(2)两种情况下系统的稳定性: (1) (2) 解:(1) 因果系统,右边序列 (2) 非因果系统, 右序 左序 有界 所以,该非因果系统,但是,是稳定的 作业 旧版:8-21(4),8-23(3), 8-24(2) 新版:同上 §8.8 离散系统的频率响应 一、什么是离散系统的频率响应? 定义一&#x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值