简单典型二阶系统_控制理论基础(一)控制系统的模型

86614f4a739f4b2832d9f1b3021f5fd9.png

控制理论的第一课往往以拉普拉斯变换开头,但往往让人困惑的也是这个拉普拉斯变换,为什么要做这样一个变换?先来看个电路的例子:

fd23575c6cf54f6f470154893356ede2.png

由电路知识,可以列写方程:

拿到了这个方程,如果没学过微分方程的解法,该怎么办?

1887年,Oliver Heaviside遇到了这个问题,他拿到了类似的微分方程,里面有一阶导数、二阶导数等等,这位大佬看着一阶、二阶这些阶数,突然想到了一个对应关系,如果我们把求一次导看成乘一次数,这不就简单了吗?例如:

Oliver随后引入了传递函数的概念,即:

他根据工程经验进行了验证,发现这种变换分析电子电路时可以采用。

但问题同样也出现了,这种变换有没有什么数学依据,虽然工程上可以这样变换。

为这种变换找个数学上靠谱的依据不是容易事,1940年左右,有可能是一位数学家的跨行研究导致,人们才意识到,早在1782年,Pierre-Simon-Laplace导出的拉普拉斯变换,早就涵盖了这种方法。

于是,带着探索之心,工程界的众人拿起了数学课本,开始审视拉普拉斯变换。

一个函数

的Laplace变换定义为

知乎上另一篇文章具体解释了为何能得出Oliver的结果:

李寒潭:【自动控制原理】1.传递函数​zhuanlan.zhihu.com
首先, 定义复空间上两个函数
的内积

易证
是复空间中的一组正交基。那么根据
内积的意义——一个函数与另一个函数的内积,是这个函数在另一个函数方向上的 投影,可得实函数
在复空间基底
上的投影为

为方便起见,令
表示虚变量。(我们后面可以看到它更深层的意义。)则可将该投影式记为

(这里的s与实数域中的t相对应,都表示空间上的变量)
同理可证
在实空间中的投影。

有了实空间中
与复空间中
的一一对应投影关系,我们就可以通过在复空间中对
进行分析和运算,从而获知实空间中
的性质和运算结果。在做这件事情之前,首先需要对实空间和复空间中的运算关系进行定义。

定义微分算子(这里的define等号表示的是对应关系,而不表示相等)

这是因为
(设初值为0)

从复空间中微分算子的定义就可以看出选择
作为基底的好处了。因为复指数函数有一个最大的优点,就是对它求导等于它自身乘一个数。因此,当我们在实空间中对
求一次导数时,在复空间中只需要将它对应的投影式乘以微分算子
。这样就极大地简化了求导运算。

类似可定义积分算子为

即对
进行一次积分,只需对其投影式除以

拿到了数学上的依据,传递函数获得了自己的根基,正式走入了课本。也拥有了正式的定义

传递函数是指零初始条件下线性时不变系统响应(即输出)量的拉普拉斯变换(或z变换)与激励(即输入)量的拉普拉斯变换之比。

拉普拉斯变换从形式上看比较麻烦,所幸控制工程师无需过于纠结,毕竟有整理好的表格

拉普拉斯变换表 - 百度文库​wenku.baidu.com

除了从微分方程导出传递函数,一些典型环节的传递函数经常用到,有时候还需要处理多个系统连接的情况,需要用到梅森增益公式、结构图化简等技巧。(不作展开)

https://www.bilibili.com/video/av71857275?from=search&seid=5072051921356333345​www.bilibili.com https://www.bilibili.com/video/av40046656?p=4​www.bilibili.com

(2.3-2.4)

但是,当我们重新审视传递函数定义时,线性时不变系统,这个词让人有点棘手,因为工程里很少有这样的系统,虽然我们可以使用后续的非线性特性来处理,然而在这里,我们可以简单的线性化。线性化的基础是泰勒展开。详见下个链接

[图文]微分方程的线性化 - 百度文库​wenku.baidu.com

另一种方式可以设计补偿环节,使得系统非常接近线性时不变。

参考文献:

1、https://zhuanlan.zhihu.com/p/23617272

2、线性系统理论与设计,Chi-Tsong Chen著

3、控制系统设计指南,George Eills著

System control:控制理论基础(二)时域分析与稳定性​zhuanlan.zhihu.com
ecd3052b7f03b98df00cd2a3bb8408d0.png
  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值