正态分布(也称为高斯分布)是统计中最常用的连续分布。正态分布在统计中至关重要,主要有以下三个原因:
商业中常见的许多连续变量的分布与正态分布非常相似。
正态分布可用于近似各种离散的概率分布。
由于正态分布与中心极限定理之间的关系,因此正态分布为其提供了经典统计推断的基础。
它是对称的,因此其均值和中位数相等。
外观为钟形。
其四分位数间距等于1.33标准偏差。
因此,中间值的50%包含在低于平均值的标准偏差的三分之二和高于平均值的标准偏差的三分之二的范围内。
它具有无限范围(-oo


升或更高,并且相等的数字预计少于1.025升。
符号f(X)用于表示概率密度函数。正态分布的概率密度函数在公式中给出。
e =用2.71828近似的数学常数
π=用3.14159近似的数学常数
μ =平均值
σ =标准偏差
X =连续变量的任何值,其中-∞
尽 管公式看起来很复杂,但由于e和是数学常数,所以随机变量X的概率仅取决 于正态分布的两个参数-平均值μ和标准偏差σ。 每次指定μ和σ
本文介绍了正态分布的基本概念,强调了其在统计推断中的重要性。正态分布是对称的钟形分布,与中心极限定理紧密相关。内容涵盖了正态分布的性质,如均值、中位数相等,以及与标准偏差的关系。通过多个实例展示了如何利用正态分布计算概率,包括使用Excel进行正态分布概率的计算。此外,文章还探讨了正态分布的百分比分布,如68-95-99.7法则。
最低0.47元/天 解锁文章
6479

被折叠的 条评论
为什么被折叠?



