要做量化投资,数据是基础,正所谓“巧妇难为无米之炊”
在免费数据方面,各大网站的财经板块其实已提供相应的api,如新浪、雅虎、搜狐。。。可以通过urlopen相应格式的网址获取数据
而TuShare正是这么一个免费、开源的python财经数据接口包,已将各类数据整理为dataframe类型供我们使用。
主要用到的函数:
1.实时行情获取
tushare.get_today_all()
一次性获取当前交易所有股票的行情数据(如果是节假日,即为上一交易日,结果显示速度取决于网速)
2.历史数据获取
tushare.get_hist_data(code, start, end,ktype, retry_count,pause)
参数说明:
code:股票代码,即6位数字代码,或者指数代码(sh=上证指数 sz=深圳成指 hs300=沪深300指数 sz50=上证50 zxb=中小板 cyb=创业板)
start:开始日期,格式YYYY-MM-DD
end:结束日期,格式YYYY-MM-DD
ktype:数据类型,D=日k线 W=周 M=月 5=5分钟 15=15分钟 30=30分钟 60=60分钟,默认为D
retry_count:当网络异常后重试次数,默认为3
pause:重试时停顿秒数,默认为0
具体可参考官网http://tushare.org/index.html
而如果要进行完备详细的回测,每次在线获取数据无疑效率偏低,因此还需要入库
下面是数据库设计部分
表1:stocks
股票表,第一列为股票代码,第二列为名称,如果get_today_all()中存在的股票stocks表中没有,则插入之。
表2:hdata_date
日线表,由于分钟线只能获取一周内的数据,我们先对日线进行研究。
字段和get_hist_data返回值基本一致,多了stock_code列,并将record_date列本来是dataframe的index
stock_code,record_date, //主键
open,high,close,low, //开盘,最高,收盘,最低
volume, //成交量
price_change,p_change, //价差,涨幅
ma5,ma10,ma20 //k日收盘均价
v_ma5,v_ma10,v_ma20, //(k日volume均值)
turnover //换手率
python工程目前有3个文件,main.py(主程序),Stocks.py(“股票们”类)以及Hdata.py(历史数据类)
main.py
import psycopg2 #使用的是PostgreSQL数据库
importtushare as tsfrom Stocks import*
from HData import*
importdatetime
stocks=Stocks("postgres","123456")
hdata=HData("postgres","123456")#stocks.db_stocks_create()#如果还没有表则需要创建#print(stocks.db_stocks_update())#根据today

本文介绍了如何使用Python的TuShare库获取股票的实时和历史数据,并将其存储到PostgreSQL数据库中。通过TuShare的get_today_all()和get_hist_data()函数获取数据,然后将数据插入到预设的stocks和hdata_date数据库表中,以便进行量化投资分析。
最低0.47元/天 解锁文章
1596

被折叠的 条评论
为什么被折叠?



