python高阶函数实例_python高阶函数map()和reduce()实例解析

1、map()传入的有两个参数,函数和可迭代对象(Itreable),map()是把传入的函数依次作用于序列的每个元素,结果返回的是一个新的可迭代对象(Iterable)。

map()代码如下:

# 定义f函数,返回的是x*x

def f(x):

return x*x

# 调用map(),根据传入的函数和list,依次作用于每个元素

s=map(f,[1,2,3,4,5])

# 打印返回的迭代器的值

print(list(s))

# 查看类型

print(type(s))

结果:

[1, 4, 9, 16, 25]

Process finished with exit code 0

当然也可以不用map(),代码如下:

# 定义一个列表

l=[1,2,3,4,5]

#()用于创建一个list,结果依次返回列表l的元素的平方,返回list

s=[i*i for i in l]

# 打印列表s

print(s)

# []用于创建一个生成器,结果依次返回列表l的元素的平方,返回generator

s1=(i*i for i in l)

# 以列表形式打印generator的元素值

print(list(s1))

# 查看s1的类型

print(type(s1))

结果:

[1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]

Process finished with exit code 0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

基于距离密度的高斯核聚类算法研究(Matlab代码实现)内容概要:本文围绕基于距离密度的高斯核聚类算法展开研究,提出了一种结合数据点间距离与局部密度特征的聚类方法,并通过Matlab代码实现该算法。该算法利用高斯核函数衡量样本间的相似性,引入密度信息以识别簇中心,有效提升了对复杂分布数据的聚类性能,尤其适用于非凸形状或噪声干扰下的数据集。文中详细阐述了算法原理、关键参数设置及其实现流程,并通过实验验证了其相较于传统聚类方法在准确性与鲁棒性方面的优势。; 适合人群:具备一定机器学习基础Matlab编程能力的高校学生、科研人员及从事数据分析、模式识别等相关工作的技术人员。; 使用场景及目标:①用于处理具有复杂结构或噪声较多的实际数据聚类问题,如图像分割、异常检测、客户分群等;②帮助理解密度-based与核方法相结合的聚类思想,掌握高斯核在聚类中的应用方式;③为改进现有聚类算法或开发新型聚类模型提供技术参考与实现基础。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注距离矩阵构建、密度计算与高斯核函数的应用部分,可通过调整参数并观察聚类结果变化加深对算法行为的理解,同时推荐在不同数据集上进行测试以评估算法泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值