关于一元函数微分学,专升本数学考试要求包括:
(一)导数与微分
1.理解导数的概念及其几何意义,了解左导数与右导数的定义,理解函数的可导性与连续性的关系,会用定义求函数在一点处的导数。
2.会求曲线上一点处的切线方程与法线方程。
3.熟记导数的基本公式,会运用函数的四则运算求导法则,复合函数求导法则和反函数求导法则求导数。会求分段函数的导数。
4.会求隐函数的导数。掌握对数求导法与参数方程求导法。
5.理解高阶导数的概念,会求一些简单的函数的n阶导数。
6.理解函数微分的概念,掌握微分运算法则与一阶微分形式不变性,理解可微与可导的关系,会求函数的一阶微分。
(二)中值定理及导数的应用
1.理解罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它们的几何意义,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。会用罗尔中值定理证明方程根的存在性。会用拉格朗日中值定理证明一些简单的不等式。
2.掌握洛必达(L’Hospital)法则,会用洛必达法则求未定式的极限。
3.会利用导数判定函数的单调性,会求函数的单调区间,会利用函数的单调性证明一些简单的不等式。
4.理解函数极值的概念,会求函数的极值和最值,会解决一些简单的应用问题。
5.会判定曲线的凹凸性,会求曲线的拐点。
6.会求曲线的渐近线(水平渐近线、垂直渐近线和斜渐近线)。
7.会描绘一些简单的函数的图形。
这一部分,我们来学习 反函数求导 技巧。在此之前,我们先来学习抽象函数求导。解析式(表达式)没有完全给出的函数,可以称为抽象函数。求解这种类型函数的导函数要深刻理解函数的概念、熟练掌握复合函数求导法则。
典型例题
掌握了抽象函数求导的方法之后,下面我们来学习反函数求导方法。

对于反函数相关问题,要深刻理解反函数的求解过程以及导数的概念(函数值的变化量比上自变量的变化量)。
典型例题
END
点个赞
再走吧
点击查看往期内容

02
一元函数微分学(占比30%)
往期回顾
一元函数微分学考点(8):参数方程求导
一元函数微分学考点(7):对数求导法
一元函数微分学考点(6):隐函数求导
一元函数微分学考点(5):分段函数求导
一元函数微分学考点(4):复合函数求导
一元函数微分学考点(3):导数计算之四则运算
一元函数微分学考点(2):导数的几何意义
一元函数微分学考点(1):导数的概念
01
函数、极限与连续(占比20%)
往期回顾
函数、极限与连续:真题讲解
函数、极限与连续:未定式总结
函数、极限与连续考点(15):连续函数的性质
函数、极限与连续考点(14):连续与间断
函数、极限与连续考点(13):曲线渐近线
函数、极限与连续考点(12):洛必达求极限
函数、极限与连续考点(11):等价无穷小求极限
函数、极限与连续考点(10):两个重要极限公式
函数、极限与连续考点(9):抓大头法求极限
函数、极限与连续考点(8):有理化法法求极限
函数、极限与连续考点(7):因式分解法求极限
函数、极限与连续考点(6):四则运算求极限
函数、极限与连续考点(5):极限的基本性质
函数、极限与连续考点(4):反函数
函数、极限与连续考点(3):函数的基本性质
函数、极限与连续考点(2):函数的表达式
函数、极限与连续考点(1):函数的定义域
专升本数学简介

扫码关注·永不迷路
一刻钟数学