python线性回归方程报告_Python线性回归实战分析

Python

线性回归实战分析

这篇文章主要介绍

Python

线性回归实战分析以及代码讲解,对此有兴趣的朋友学习下

吧。

一、线性回归的理论

1

)线性回归的基本概念

线性回归是一种有监督的学习算法,

它介绍的自变量的和因变量的之间的线性的相关关

系,

分为一元线性回归和多元的线性回归。

一元线性回归是一个自变量和一个因变量间的回

归,

可以看成是多元线性回归的特例。

线性回归可以用来预测和分类,

从回归方程可以看出

自变量和因变量的相互影响关系。

线性回归模型如下:

对于线性回归的模型假定如下:

(

1

)

误差项的均值为

0

,且误差项与解释变量之间线性无关

(

2

)

误差项是独立同分布的,即每个误差项之间相互独立且每个误差项的方差是相等的。

(

3

)

解释变量之间线性无关

(

4

)

正态性假设,即误差项是服从正态分布的

以上的假设是建立回归模型的基本条件,

所以对于回归结果要进行一一验证,

如果不满

足假定,就要进行相关的修正。

模型的参数求解

(

1

)矩估计

一般是通过样本矩来估计总体的参数,

常见是样本的一阶原点矩来估计总体的均值,

阶中心矩来估计总体的方差。

(

2

)最小二乘估计

一般最小二乘估计是适用于因变量是连续型的变量,最常用的是普通最小二乘法

(

Ordinary Least Square

OLS

)

,它的原理是所选择的回归模型应该使所有观察值的残差平

方和达到最小。

预测值用表示,

对应的实际值

,残差平方和

,最小二乘估计是求得参数的

值,使得

L

最小。对于线性回归求得的参数值是唯一的。

(

3

)极大似然估计

极大似然估计是基于概率的思想,

它要求样本的概率分布是已知的,

参数估计的值是使

得大量样本发生的概率最大,用似然函数来度量,似然函数是各个样本的密度函数的乘积,

为方便求解对其求对数,加负号求解极小值,得到参数的估计结果。

3

)模型的优缺点

优点:结果易于理解,计算上不复杂

缺点:对于非线性的数据拟合不好

二、用

Python

实现线性回归的小例子

数据来源于网络爬虫,

武汉市商品房价格为因变量和几个相关关键词的百度指数的搜索

量为自变量。

由于本文的自变量有

98

个,首先进行自变量的选择,先是通过相关系数矩阵筛选掉不

相关的变量,根据

Pearson

相关系数矩阵进行变量的选取,一般选取相关系数的值大于

0.3

的变量进行回归分析,由于本文的变量较多,先进行手动筛选然后利用相关系数进行选取,

本文选取相关系数大于

0.55

的变量进行回归分析。

经过相关系数的分析选取

8

个变量进行下一步的分析,分析的

Python

代码如下:

#

-

*

-

coding: utf

-

8

-

*

-

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值