如何把分隔符全部替换成回车_怎么去仿站?如何去仿别人网站?

从事互联网行业的工作者,大多都有自己一个难实现的梦想养一个或者多个网站,几年之后这个站能给我带来比较大的利润、或者卖个比较高价钱之类的想法),虽然这“梦想”个实现的可能性不会太高,不过还是使很多互联网工作者想拥有自己的网站。。。

2ca25c2b5c971c579293ee6ff0ffbfaa.png

因为都是工作者由于自身的能力有限制以及经济的负担,去建一个站或者买一个站实在不合适。。所以大部分人第一就会想到仿站,把别人的网站放过来自己使用。。。

在万般的熏染下使笔者(陈少庭)也有了比较强的拥有自己网站的欲望。在自己的未来的发展网站是必不可少的,仿站也是一种必备的手段。一个网站给怎么去仿制? 如何把一个站仿好呢? 请回答详细点。。。。谢谢!

仿站从理论上非常简单,一句话,就是把目标网站的数据替换成模板数据。 我稍微详细一点回答。

①首先要观察目标网站的页面,一般大体分为首页、栏目页、内容页以及其他的页面(搜索页面、标签页面等)。下面以首页为例,原理都一样。

②保存首页数据,一般在浏览器“文件-另存为”保存类型选择“网页、全部”,当然一些网站数据是没办法直接保存的,比如背景图片,这个你找到图片路径保存下来即可。

③替换数据(以织梦为例)。把网站的每一块都要替换,比如网页源码中的一块是

  • 文章标题
  • 文章标题
  • 文章标题

替换成织梦的标签就是

{dede:arclist row=3 titlelen=60 }

[field:title/]

{/dede:arclist}

每个程序的标签各不相同,所以你要熟悉使用程序的模板标签等。

④把每个需要替换的地方都用模板标签替换,框架(div+css)不变,当然也可以根据需要调整。

这样基本就完成了,需要注意的是,

最好在本地搭建程序环境(这样就不需要上传下载到主机,在本地调试好再上传);

熟悉程序的标签(必须的),可以下载程序的使用手册;

不懂的地方多百度、谷歌;

ca25afe8727874d24abc75d9d93c21d7.png

熟能生巧,一开始肯定慢,而且易烦躁,熟悉了就好了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改清华源后再执行以上命令,这样安装要快一些 软件包都安装功后才算功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值