java求数列的最大子段和_高中数学:等差数列、等比数列知识点总结

本文详细介绍了等差数列和等比数列的基本定义、性质及其应用,包括等差数列的中项、前n项和的性质,以及等比数列的乘积性质。同时,探讨了等差数列前n项和的最值问题解决方法,提供了从数列和求通项公式的策略,如差商法、叠乘法等。
摘要由CSDN通过智能技术生成
d8aed4a72f464048dfbc2b9ac23beadf.gif 7a75890a5cdc6cd7330d98534b7b5247.png

数列基础知识归纳

62906536f3cd2cd4f2757a309c436f21.gif

等差数列定义与性质

定义:

an+1-an=d (d为常数),

an= a1+(n-1)d

等差中项:

x , A , y成等差数列: 2A=x+y

前n项和:

bb6d52b4e78d29b266b14402cfbf16e7.png

性质:{an}是等差数列

(1)若m+n=p+q,则am+an=ap+aq ;

(2)数列{a2n-1},{a2n},{a2n+1}仍为等差数列,Sn,S2n-Sn,S3n-S2n,等仍为等差数列,公差为n2d ;

(3)若三个成等差数列,可设为a-d,a,a+d ;

(4)若an,bn是等差数列,且前n项和分别为Sn,Tn,则

349ef1be6e0c5cf3561029007689804c.png

(5){an}为等差数列,则Sn=an2+bn(a,b为常数,是关于n的常数项为0的二次函数),Sn的最值可求二次函数Sn=an2+bn的最值;或者求出{an}中的正、负分界项,即:

当a1>0,d<0,解不等式组:

879ccf541868a716cfc007b24a2617a2.png

可得Sn达到最大值时的n值。

当a1<0,d>0,解不等式组:

6d215a4cb50121cadafc87b97bd4edc3.png

可得Sn达到最小值时的n值。

(6)项数为偶数2n的等差数列{an},有

2721bd5ae6c7b3d2adf8f712cc4b0a2c.png d0afd69bb7165057bb61cf9858d1bfa7.png

(7)项数为偶数2n-1的等差数列{an},有

d97d0b0b538d5f51cd7db08f466b35e8.png c2047e1fc9fc44a81e243923ab19b42e.png

等比数列定义与性质

7b99b92c7187accb6304a8539d8b78d1.png acb35a950cbc6b3965243186188cb9ed.png 0ff7e3f37165cc45e3d72e99f95aec0c.png

性质:{an}是等比数列

(1) 若m+n=p+q,则am•an=ap•aq

(2) Sn , S2n-Sn , S3n-S2n , 等仍为等比数列,公比为qn

注意:

由Sn求an时应注意什么?

n=1时,a1=S1 ;

n≥2时,an=S1-Sn-1

求数列通项公式的常用方法

求差(商)法

87130dc2486f63b5a7958dee66e9714a.png 7a5403a68c172a58ef56c897d89ce15f.png

叠乘法

81a0ca8be4b0e101fad53f1669e92c3e.png

等差型递推公式

7e76ee48ac1380c3b2e885598470bff7.png d0b92e97486b7fed8c38cb406d7c4e0d.png

答案:

850e48dda29a0019a018ab37c32640b4.png

等比型递推公式

8895a2b30e052e751b014c81eec1e91b.png

倒数法

e4c7e47b2c2d175dc90facd843808bec.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值