反比例函数属于中考的必考内容!总体来看,关于反比例函数比例系数k值的几何意义类题目主要为:
一、求出反比例函数上相应的点坐标进而求出K值
二、通过面积求解K值。
三、利用K的几何意义,推断或求解相关结论。
一次函数是基础,而二次函数和反比例函数才是中考中的重难点!反比例函数有填空题,选择题,也有压轴题;在中考中如果反比例函数考到压轴题,必然会和一次函数,平行四边形或全等(相似)三角形的知识点相结合。要想学好反比例函数,首先要理解反比例函数的三种表达形式,虽然表达形式不一样,但是本质上都是反比例函数!
在一次函数学习时,我们知道函数的表达有列表、图像和表达式三种形式;通过列表,描点,连线的方式能够画出一个函数的图像。
通过这种手段能发现反比例函数的图像是双曲线,它分为两支,根据K取值的大小分别在一、三象限或者二、四象限。
进一步研究反比例函数的图像,会发现很多有趣的图像性质,比如反比例函数关于原点对称,与x轴和y轴都没有交点,即x不等于0,y不等于0;比如反比例函数图像既是轴对称图形也是中心对称图形!这是一种数学美!
那么系数K的几何意义是什么呢?简单来讲,过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。K的几何意义就是:它的绝对值就是所围成的矩形的面积;而且由反比例函数表达式可知,这个面积的值是不变的!不变的!与位置无关!非常重要!非常重要!
根据K的几何意义,我们还引申出很多有用的变式:
理解了K的几何意义及其变式的意义,解答反比例函数的题目才能拓宽思路,高效准确!最简单的,理解了K的几何意义,我们一下就能判断出图中的面积关系:
在中考的试卷中,直接要求K的值是在所难免的:
再比如这题,理解了K的几何意义,直接就是送分的题目!这样的题目正确率竟然才65%,不心动吗:
反比例函数的压轴题,必然是各种知识的集合,与几何的集合不可避免,面积大小、与四边形或三角形等图形的关系求解也是大概率事件!K的几何意义作为知识点之间的媒介,尤为重要!不理解K的几何意义,反比例函数一定没有学会!