matlab画三元隐函数,用MATLAB求三元函数的最小值肿么编程

本文通过多个实例演示了如何使用MATLAB进行三元函数的图形绘制以及寻找函数的最小值。包括求解f=2*exp(-x).*sin(x)的最小值,设计无盖水槽最大化容积问题,多变量优化问题以及Rosenbrock函数的数值解。每个例子都结合了函数图形和优化算法的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例1 求 f = 2 在0

主程序为wliti1.m:

f='2*exp(-x).*sin(x)';

fplot(f,[0,8]); %作图语句

[xmin,ymin]=fminbnd (f, 0,8)

f1='-2*exp(-x).*sin(x)';

[xmax,ymax]=fminbnd (f1, 0,8)

运行结果:

xmin = 3.9270 ymin = -0.0279

xmax = 0.7854 ymax = 0.6448

★(借助课件说明过程、作函数的图形)

例2 对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?

设剪去的正方形的边长为x,则水槽的容积为: ,建立无约束优化模型为:min y=- , 0

先编写M文件fun0.m如下:

function f=fun0(x)

f=-(3-2*x).^2*x;

主程序为wliti2.m:

[x,fval]=fminbnd('fun0',0,1.5);

xmax=x

fmax=-fval

运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.

★(借助课件说明过程、作函数的图形、并编制计算程序)

例3

1、编写M-文件 fun1.m:

function f = fun1 (x)

f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值