内容提要:
1 基本概念; 2 群的同构定理; 3 循环群; 本文主要参考文献.
更多内容,请移步专栏目录:
格罗卜:格罗卜的数学乐园-目录zhuanlan.zhihu.com
1 基本概念
我们先简要复习一下群论的基本概念.
1-1. [群I]
1-2 [群II]
- 在群II中, 左逆是右逆.
[证明]有左逆
,
有左逆
, 那么
.
- 在群II中, 左单位元是右单位元.
[证明] 设左单位元是, 那么
.
- 由此可见群的这两种定义是等价的.
- [阿贝尔群] 阿贝尔群是运算满足交换律的群.
- 群的单位元唯一.
[证明].
- 群中元素的逆元唯一.
[证明]有逆
和
, 那么
.
- [消去律] 群中成立消去律:
1-3. [子群] 群
1-4. [正规子群]
1-5. [态射] 两个群之间的映射
1-6. [像] 同态
1-7. [核] 同态
- 同态的核是正规子群.
- 同态的像是子群.
- 同态

本文深入探讨了群论的基本概念,包括群的定义、阿贝尔群、子群、正规子群、同态、商群以及Lagrange定理。重点阐述了群的同构定理,包括满同态的结构和第一、第二同构定理,揭示了群的结构关系。同时,文章详细讲解了循环群的概念,如阶、无限循环群和有限循环群的性质。通过这些理论,读者可以更好地理解群论的核心思想。
最低0.47元/天 解锁文章
748

被折叠的 条评论
为什么被折叠?



