aggr代码 cellranger_seurat3的merge功能和cellranger的aggr整合多个10X单细胞转录组对比...

本文对比了使用Seurat3的merge功能和Cellranger的aggr方法整合多个10X单细胞转录组样本的效果。通过降维和聚类分析,发现两种方法得到的细胞亚群分布相似,但Seurat3的merge未处理样本效应。文章提供了详细的分析流程和结果,强调了去除批次效应的重要性。
摘要由CSDN通过智能技术生成

昨天我在单细胞天地的教程:使用seurat3的merge功能整合8个10X单细胞转录组样本 完完整整的展示了如何使用seurat3的merge功能整合8个10X单细胞转录组样本,因为这个数据集的文章作者使用的是cellranger流程,而且我们在单细胞天地多次分享过流程笔记,大家可以自行前往学习,如下:

我们得比较一下,作者的cellranger的aggr整合多个10X单细胞转录组得到的表达矩阵,跟我们使用seurat3的merge功能整合8个10X单细胞转录组样本后的表达矩阵是否有差异。

幸运的是,作者在GEO数据库也放上去了自己cellranger的aggr整合多个10X单细胞转录组得到的表达矩阵,所以我们只需要下载走seurat3的降维分群即可跟昨天的教程:使用seurat3的merge功能整合8个10X单细胞转录组样本 聚类分群结果进行对比啦!

首先走seurat3的降维分群流程

library(Seurat)

sce=CreateSeuratObject(counts = Read10X('input/'),

project = 'merge' )

# 步骤 ScaleData 的耗时取决于电脑系统配置(保守估计大于一分钟)

sce

vars.to.regress = c('nCount_RNA'),

model.use = 'linear',

use.umi = FALSE)

sce

mean.function = ExpMean,

dispersion.function = LogVMR,

x.low.cutoff =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>