昨天我在单细胞天地的教程:使用seurat3的merge功能整合8个10X单细胞转录组样本 完完整整的展示了如何使用seurat3的merge功能整合8个10X单细胞转录组样本,因为这个数据集的文章作者使用的是cellranger流程,而且我们在单细胞天地多次分享过流程笔记,大家可以自行前往学习,如下:
我们得比较一下,作者的cellranger的aggr整合多个10X单细胞转录组得到的表达矩阵,跟我们使用seurat3的merge功能整合8个10X单细胞转录组样本后的表达矩阵是否有差异。
幸运的是,作者在GEO数据库也放上去了自己cellranger的aggr整合多个10X单细胞转录组得到的表达矩阵,所以我们只需要下载走seurat3的降维分群即可跟昨天的教程:使用seurat3的merge功能整合8个10X单细胞转录组样本 聚类分群结果进行对比啦!
首先走seurat3的降维分群流程
library(Seurat)
sce=CreateSeuratObject(counts = Read10X('input/'),
project = 'merge' )
# 步骤 ScaleData 的耗时取决于电脑系统配置(保守估计大于一分钟)
sce
vars.to.regress = c('nCount_RNA'),
model.use = 'linear',
use.umi = FALSE)
sce
mean.function = ExpMean,
dispersion.function = LogVMR,
x.low.cutoff =

本文对比了使用Seurat3的merge功能和Cellranger的aggr方法整合多个10X单细胞转录组样本的效果。通过降维和聚类分析,发现两种方法得到的细胞亚群分布相似,但Seurat3的merge未处理样本效应。文章提供了详细的分析流程和结果,强调了去除批次效应的重要性。
最低0.47元/天 解锁文章
417

被折叠的 条评论
为什么被折叠?



