跟着迪哥学python 经管之家_经管之家俱乐部:市面上并不多见的经管学习圈子!...

每一行都有每一行的门道和技巧

每一行都存在着独有的规律、玩法与规则

——却并不那么容易为外人所知

经济管理领域就是世界上汇聚了最多聪明人也最烧脑的领域之一,这里有无数大师、大咖、牛人、学者、研究员、行业精英。他们的头脑如火山一般,澎湃出经管领域最旺盛的思考力和洞见力,源源不断地生产着知识黄金……

想成为这样的人最好也是最快途径就是向他们学习。

「经管之家俱乐部」就是一个在市面上并不多见的经管学习圈子。

每月活动交流——精英圈友与你共同学习,讨论实践

海量内容精选——只筛选最值得关注的优质内容,让每一分钟都很值钱

项目需求对接——找合作伙伴,玩知识变现,对接项目,都是一个最优质的地方

稀缺资源速递——-资源高度聚合,稀缺一手价值,经管资源的老、精、稀

大咖采访专享——-云大咖之智,赋能你的人生

在学习和成长中的我们,面临的类似困惑更多。大多学习资源都唾手可得,各种信息时刻扑面而来。我们有太多的选择,但要找到那些最合适的,却要忍受许多冗余信息的干扰,也因此错过了很多真正好的东西。

阅读从来不是装满的过程,而是点燃的过程!

【经管之家俱乐部】致力于为用户筛选最值得关注的优质内容、有效拓展人脉边界。为此,我们跟踪了业内绝大多数杂志报纸、微信微博、互联网商学院、电台电视台、图书和其它主要媒体。为大家甄选出最值得关注的经管内容。

学习从来不是一个人的事,而是很多人的事!

在圈子里高效互动,在火花中完成高质量的学习交流。它不是以一个人分享为主,还会每期邀请至少1位不同领域的经管达人,从不同主题分享经验,解答疑惑。让你在圈子里全面快速提升,我们希望每一个人都能达成目标。

你所不知道的问题,不一定别人也不知道!

无论我们处在什么年纪,无论我们在面临什么挑战,我们都要相信,几乎所有的事情都可以解决,所有的问题都有答案。

我们正在经历着的困难,一定有人曾经经历过;我们久久不得解的困惑,一定有人已经完全搞清楚。

欢迎加入经管之家俱乐部,您将至少但不限于以下截图的方式,拥有海量资源,打通经管人脉,不辜负生命,迅速成为经管领域的佼佼者!

联系方式

刘老师

逻辑回归是一种机器学习算法,常用于二分类问题。下面是一个逻辑回归的Python代码实现的例子: ```python import numpy as np import pandas as pd # Sigmoid函数,用于将预测结果转化为概率值 def sigmoid(z): return 1 / (1 + np.exp(-z)) # 损失函数,用于评估模型的准确性 def cost(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1-y), np.log(1 - sigmoid(X * theta.T))) return np.sum(first - second) / len(X) # 梯度下降算法,用于最小化损失函数,得到最优参数 def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = sigmoid(X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:,j]) temp[0,j] = theta[0,j] - (alpha / len(X)) * np.sum(term) theta = temp cost[i] = cost(theta, X, y) return theta, cost # 读取数据 data = pd.read_csv('data.csv') # 添加一列全为1的特征列 data.insert(0, 'Ones', 1) # 将数据转化为矩阵 cols = data.shape[1] X = data.iloc[:,0:cols-1] y = data.iloc[:,cols-1:cols] X = np.matrix(X.values) y = np.matrix(y.values) theta = np.zeros([1,3]) # 设置学习率和迭代次数 alpha = 0.01 iters = 1000 # 执行梯度下降算法,得到最优参数 theta, cost = gradientDescent(X, y, theta, alpha, iters) # 输出最优参数和损失函数值 print("最优参数:", theta) print("损失函数值:", cost[-1]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值