c++控制台应用每一列数据如何对齐_懂Excel就能轻松入门Python数据分析包pandas(十六):合并数据...

此系列文章收录在公众号中:数据大宇宙 > 数据处理 >E-pd

转发本文并私信我"python",即可获得Python资料以及更多系列文章(持续更新的)

a5be76b274749468bf3c731bfe9612c6.png

经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas

前言

本系列上一节说了拆分数据的案例,这次自然是说下怎么合并数据。

随着需求复杂度提高,很多时候已经不能用 excel 自带功能实现了,不过 pandas 中许多概念与 excel 不谋而合


案例1

公司的销售系统功能不全,导出数据时只能把各个部门独立一个 Excel 文件,此时你需要对整体数据做分析,最好的方式当然是先把各个文件统一汇总起来:

a31307080d11c85a3cf62a54acb2298e.png
  • 注意看,虽然每个表的标题一样,但是他们的顺序可能出现不一致

这里有3个关键点:

  • 如何获得一个文件夹中所有文件的路径
  • 加载 Excel 文件数据
  • 列标题对齐的情况下,多个数据合并

这次我们需要用到3个包:

b9f39a862e7bc1592fdd664dfde19e41.png
  • pandas 不用多说
  • from pathlib import Path ,用于获取文件夹中文件的路径
  • openpyxl 用于读取 Excel 文件所有的工作表

我们来看看如何用 pandas 完成需求:

6fe124c45af71ff9dd58b63046faaec6.png
  • Path('案例1').glob('*.xlsx') ,获得指定文件夹(案例1)中的所有 Excel 文件路径
  • pd.read_excel(f) ,加载 Excel 数据
  • pd.concat(dfs) ,合并多个数据,pandas 自动进行索引对齐

关于 pathlib 的知识点,请关注公众号的入门必备系列文章


上面是普通的写法,这场景我倾向于使用推导式:

c255a2236d6e0695d52b987a8cc2ce03.png

推导式内容,请看 数据大宇宙 > Python入门必备 > 必备知识 > 细讲Python推导式


cf9294dc21ee14c0ae07b4b1915e7642.png

案例2

有时候,表格中没有必要的信息,如下:

19a62f21b038d7707aff7d6d1e5cc2a9.png
  • 这次表格中没有部门列,部门的信息只能在文件名字中获取

77ed2c3f1e328b0c15d2d0551cbc2234.png
  • df['部门'] = f.stem ,pandas 中添加一列值是非常容易。f.stem 是不带后缀的文件名字

为什么上面不用推导式呢?因为推导式只适合一行连续调用的写法,当然这里还是可以使用推导式实现的:

8a4154e3ccd491cc0164b2f1518ed815.png
  • DataFrame.assign(部门=f.stem) 是一个添加列并且返回修改后的数据的方法,特别适合这种场景下使用

各种创建或移除行列数据的应用,请留意专栏文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值