python实现正态分布_用python来学数理统计-正态分布(1)

踌躇再三,先写一篇

毕竟这是python语言入门, 也不怕笑话

今天,从“正态分布”开起,为什么?

给你一个标准“正态分布”;它再漂亮,“期望”也是零。

1、函数库介绍

Python的许多功能由扩展库来完成,科学计算方面主要有NumPy、SciPy,绘图可视化由matplotlib(pylab隶属于其中)来实现,这些都是开源、可自由下载安装。

2、常用的统计函数

Scipy中的stats模块包含了多种常用的数据统计函数,包括连续和离散两种随机变量。

对于连续随机变量,可有如下操作:

rvs:随机变量进行取值,通过size给定大小

pdf:概率密度函数

cdf:累计分布函数

sf:生存函数,1-CDF

ppf:百分点函数,累计分布函数的反函数

isf:生存函数的反函数

stats:返回期望和方差(mean()、var())

3、连续正态分布

举例-1:获得norm函数的使用说明

>>> from scipy import stats

>>> from scipy.stats import norm

>>> print norm.__doc__

举例-2:创建正态分布随机变量及绘图

>>> import numpy as np

>>> import pylab as pl

>>> X = norm() #默认参数,loc=0,scale=1

>>> Y = norm(loc=1.0,scale=2.0) #平移1.0,放大2.0

>>> t = np.arange(-10,10,0.01)

>>> pl.plot(t,X.pdf(t),label="$X$",color="red"))

>>> pl.plot(t,Y.pdf(t),"b--",label="$Y$")

>>> plt.legend()

看看效果吧

sg_trans.gif

当然,你可以试试上面提到的其它函数,开始吧!

相关资源:Leslie人口预测模型
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页