生成器
阅读: 13136
评论:7
前面我们已经好几次提到了生成器的概念。这里对其简要介绍一下。
有时候,序列或集合内的元素的个数非常巨大,如果全制造出来并放入内存,对计算机的压力是非常大的。比如,假设需要获取一个10**20次方如此巨大的数据序列,把每一个数都生成出来,并放在一个内存的列表内,这是粗暴的方式,有如此大的内存么?如果元素可以按照某种算法推算出来,需要就计算到哪个,就可以在循环的过程中不断推算出后续的元素,而不必创建完整的元素集合,从而节省大量的空间。在Python中,这种一边循环一边计算出元素的机制,称为生成器:generator。
前面我们说过,通过圆括号可以编写生成器推导式:
>>> g = (x * x for x in range(1, 4))
>>> g
at 0x1022ef630>
可以通过next()函数获得generator的下一个返回值,这点和迭代器非常相似:
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
Traceback (most recent call last):
File "", line 1, in
next(g)
StopIteration
但更多情况下,我们使用for循环。
for i in g:
print(i)
除了使用生成器推导式,我们还可以使用yield关键字。
在 Python中,使用yield返回的函数会变成一个生成器(generator)。
在调用生成器的过程中,每次遇到yield时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行next()方法时从当前位置继续运行。
# 斐波那契函数
def fibonacci(n):
a, b, counter = 0, 1, 0
while True:
if counter > n:
return
yield a # yield让该函数变成一个生成器
a, b = b, a + b
counter += 1
fib = fibonacci(10) # fib是一个生成器
print(type(fib))
for i in fib:
print(i, end=" ")
评论总数: 7
“在调用生成器的过程中,每次遇到yield时函数会暂停并保存当前所有的运行信息,返回yield的值”
这句话没看懂啊!
By
用户6631187905 On
2020年8月21日 19:32
回复
一脸懵逼,直接跳过了
By
MANCHESTERfcc On
2019年10月18日 13:13
回复
蒙了
By
学以致用站颠疯 On
2018年4月28日 22:33
回复
在调用生成器的过程中,每次遇到yield时函数会暂停并保存当前所有的运行信息,返回yield的值。并在下一次执行next()方法时从当前位置继续运行。
By
海上有个树荫_hhh On
2018年3月11日 16:35
回复
这句话让我蒙了
用户5888865032
回复
海上有个树荫_hhh
2019年4月1日 17:28
回复
我理解就是:按照算法计算出一个值,并返回给用户,等下一次调用next()的时候再算出下一个值,调用一次next()计算一次值
神界游民
回复
用户5888865032
2019年7月3日 13:57
回复
>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> type(range(10))
>>> xrange(10)
xrange(10)
>>> type(range(10))
>>> type(xrange(10))
>>> dir(xrange)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__getitem__', '__hash__', '__init__', '__iter__', '__len__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']
-----------------------分割线----------------------------
py2中range生成的是列表,应该用xrange
py3没有xrange
By
ywhyme On
2018年1月18日 17:35
回复