16位CRC校验C语言算法.pdf
CRC 算法原理及C 语言实现
摘 要 本文从理论上推导出CRC算法实现原理,给出三种分别适应不同计算机或微控
制器硬件环境的C语言程序。读者更能根据本算法原理,用不同的语言编写出独特风格
更加实用的CRC计算程序。
关键词 CRC算法 语言C
1 引言
循环冗余码CRC检验技术广泛应用于测控及通信领域。CRC计算可以靠专用的硬件来实现,
但是对于低成本的微控制器系统,在没有硬件支持下实现CRC检验,关键的问题就是如何通过软件
来完成CRC计算,也就是CRC算法的问题。
这里将提供三种算法,它们稍有不同,一种适用于程序空间十分苛刻但CRC计算速度要求不高
的微控制器系统,另一种适用于程序空间较大且CRC计算速度要求较高的计算机或微控制器系统,
最后一种是适用于程序空间不太大,且CRC计算速度又不可以太慢的微控制器系统。
2 CRC简介
CRC校验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序
列,以一定的规则产生一个校验用的监督码 (既CRC码)r位,并附在信息后边,构成
一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC
码之间所遵循的规则进行检验,以确定传送中是否出错。
16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(既乘以216 )后,
再除以一个多项式,最后所得到的余数既是CRC码,如式 (2-1)式所示,其中B(X)表
示n位的二进制序列数,G(X)为多项式,Q(X)为整数,R(X)是余数 (既CRC码)。
B (X ) 216 R (X )
Q(X ) (2-1)
G(X ) G(X )
求CRC码所采用模2加减运算法则,既是不带进位和借位的按位加减,这种加减运
算实际上就是逻辑上的异或运算,加法和减法等价,乘法和除法运算与普通代数式的乘
除法运算是一样,符合同样的规律。生成CRC码的多项式如下,其中CRC-16和CRC-CCITT
产生16位的CRC码,而CRC-32则产生的是32位的CRC码。本文不讨论32位的CRC算法,
有兴趣的朋友可以根据本文的思路自己去推导计算方法。
CRC-16:(美国二进制同步系统中采用) G(X ) X 16 X 15 X 2 1
CRC-CCITT:(由欧洲CCITT推荐) G(X ) X 16 X 12 X 5 1
CRC-32: G(X ) X 32 X 26 X 23 X 22 X 16 X 12 X 11 X 10 X 8
X 7 X 5 X 4 X 2 X 1 1
接收方将接收到的二进制序列数 (包括信息码和CRC码)除以多项式,如果余数为
0,则说明传输中无错误发生,否则说明传输有误,关于其原理这里不再多述。用软件
计算CRC码时,接收方可以将接收到的信息码求CRC码,比较结果和接收到的CRC码是
否相同。
3 按位计算CRC
对于一个二进制序列数可以表示为式(3-1):
n n1 -1)
B (X ) B 2 B 2 B 2 B
n n1 1 0
求此二进制序列数的CRC码时,先乘以216 后 (既左移16位),再除以多项式G(X),所得的余数既
是所要求的CRC码。如式(3-2)所示:
B (X ) 216 Bn 216 2n Bn1 216 2n1 B1 216 2 B0 216 (3-2)
G(X ) G(X ) G(X ) G(X )