查看tensor
x.shape # 尺寸
x.size() # 形状
x.ndim # 维数
例如
import torch
parser = argparse.ArgumentParser(description='PyTorch')
parser.add_argument('--img_w', default=144, type=int, metavar='imgw', help='img width')
parser.add_argument('--img_h', default=288, type=int, metavar='imgh', help='img height')
parser.add_argument('--batch-size', default=32, type=int,metavar='B', help='training batch size')
parser.add_argument('--test-batch', default=64, type=int, metavar='tb', help='testing batch size')
class net(nn.Module):
def __init__(self, arch='resnet18'):
super(net, self).__init__()
model_ft = models.resnet50(pretrained=True)
self.visible = model_f

本文介绍了如何使用PyTorch检查张量的维度、形状和大小,包括`.shape`、`.size()`和`.ndim`属性。通过示例展示了在不同网络层后如何查看图像通道数、高度、宽度以及批次大小。还补充了`torch.size()`、`torch.view()`、`torch.squeeze()`、`torch.unsqueeze()`和`torch.permute()`等与维度变换相关的函数用法。
最低0.47元/天 解锁文章
811

被折叠的 条评论
为什么被折叠?



