矩阵的对数运算公式_数学一轮复习10,对数与对数函数,基本方法是“同底法”...

本文讲解了对数的概念、运算性质及其与自然对数的关系,介绍了如何通过具体实例理解对数函数,并探讨了对数函数的图象特征、单调性和特殊点等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【考试要求】

1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;2.通过具体实例,了解对数函数的概念.能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;

9ed00a4a1713f6fc653e8dc01da7674c.png
9ada4bd8691489f8eb149da1157ff3eb.png
624b7033aabaf9ac55745adde3282b02.png
fa7221dae29523ab112b77d1a8849c2c.png
178c62e55f43fe23fffd1615c87eb5e0.png
fd19d9dc669f9042e5beb0ec4bb2f021.png
5fa2c9e26a73e26d4e75aa1ff45a9512.png
f8717a450c915b83ae47f4452c1d64aa.png

【规律方法】 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.

2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.

3f3be3e4f705224df59f479357fa8cb0.png
f540cf1d0a2156b35a36f81751cd7dd6.png
fc2c16625e37e13903321d0264e4109a.png
7cd095651de42cea6ea6e42982093d55.png

【规律方法】 1.确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.

2.如果需将函数解析式变形,一定要保证其等价性,否则结论错误.

3.在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件.

cd9c4c2841f98ec5aa71293396fc69d9.png
b757292e060c42d91feaee6c604aa8a0.png

2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.

3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.

4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y=1交点的横坐标进行判定.

91d66cc8aa61983d523635b10cd78062.png
a3f0926699ffe7e2ffaf027b8d80e272.png

【规律方法】 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.

2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.

a8c584f52c7dd946eedbe63a75ed6b81.png
47d369392dbe4f51f26970ba6f3fbee2.png
ba3987abf40dc27e77ffc342542a071f.png
19d6bff9c42e930ecab9fe0269adec64.png
7d4cf58ef4ae728bdd7bf5f914901769.png
46ca57ce045c6473635a7db221153f01.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值