绪论
舍入误差:只取有限位数。
截断误差:设计算法使用近似处理。(例如:插值、拟合、求积/微分等的余项。用1+x表示e^x的误差)
绝对误差:e(x*) = x*-x
绝对误差限:((x*)
相对误差:
相对误差限:
有效数字
※※定义1:如果近似值x*的误差限是某一位的半个单位,该位到 x* 的第一位非零数字共有n 位,称 x* 有n 位有效数字。
※※定义2:用 x* 表示 x 的近似值,并将x*表示成,若其误差限,则称 x*具有 n 位有效数字。
定理1:设近似值有n位有效数字,,则其相对误差限为。
定理2:设近似值的相对误差不大于则它至少有n位有效数字。
算术运算误差:
,
和或差的误差限是误差限之和。
※函数运算误差:
多元函数误差=(各个自变量偏导数*各个自变量误差)再求和
方程求根
二分法误差估计:
※※迭代法收敛条件:
设在[a , b]上存在,且满足条件:
(1) 当x∈[a , b]时,
(2) 存在正数0
则方程在[a , b]上有唯一根x*,对任意迭代初值 x0∈[a , b],迭代收敛于x*。
(领域内收敛条件)若方程之根的某邻域内存在,且存在正常数0
则任取 x0∈ U , 迭代格式均收敛于x*。
迭代法的收敛速度:
※定义:令为第k次迭代的误差,若:
则迭代是p阶收敛。
※定理:设x*为的根,在x*的邻域 U内有连续的 p 阶导数,则
(1)若则线性收敛;
(2)若则p阶收敛
※牛顿法:
令f(x)一阶Taylor展开式:,可解得:,可得迭代格式:
收敛阶数:单根至少2阶;重根线性。
双点割线法:将差商代替牛顿法中的导数f (( xk ), 得:
单点割线法:用x0代替双点割线法中的所有xk-1,得:
收敛阶数:双点割线法是超线性收敛的( p =1.618>1 ),单点割线法在单根附近是线性收敛的。
线性方程组的数值方法
向量的范数
定义1 对任意 n 维向量 x (Rn,若对应非负实数||x|| ,满足
① 非负性 ||x||(0 ,等号仅当 x=0 时成立;
② 齐次性 对任何实数 ( , || ( x||=| ( |· ||x||;
③ 三角不等式 ||x+y||( ||x|| +||y|| ;
则称 ||x|| 为向量 x 的范数。
※常用的向量范数有
矩阵的范数
定义2 对任意n阶方阵 A=(aij)nn,若对应一个非负实数 ||A|| ,满足
① 非负性 ||A||( 0 且||A||=0当且仅当A=0;
②齐次性 对任意实数 ( , || ( A||=| ( | ( ||A||;
③三角不等式 对任意两个n阶方阵A与B, 有
||A+B|| ( ||A||+||B||;
④相容性 ||AB|| ( ||A|| ||B||
则称 ||A|| 为矩阵A的范数。
※常用的矩阵范数有
(谱范数)
※定义3 设n 阶方阵 A=(aij)nn 的特征值为(i (i=1,2, …,n), 称为A的谱半径。
定义1 如果矩阵A或常数项b 的微小变化(小扰动), 引起方程组Ax=b解的巨大变化, 则称此方程组为“病态”方程组, 其系数矩阵 A 称为“病态”矩阵(相对于方程组而言), 否则称方程组为“良态”方程组, A称为“良态”矩阵.
※定义2 设A是非奇异矩阵, 称数condv(A) =||A-1||v||A||v (v=1,2或() 为矩阵A的条件数 .
※常用的条件数
(1) cond∞(A)=||A-1||(||A||(;
(2) A的谱条件数:
当A为对称矩阵时,
迭代法
定义1 如果序列{x(k)}的极限存在(记 x*),则称迭代法收敛,x*就是方程组 Ax=b 的解,否则称此迭代法发散。
定义2 如果,则称矩阵序列{A(k)}依范数收敛于A,记
※定理1 1)迭代格式x(k+1) = Bx(k) + f 收敛 ( lim Bk=O;
2)迭代格式 x(k+1) = Bx(k) + f 收敛 ( (( B )<1。
定义3 称为迭代法 x(k+1) = Bx(k) + f 的收敛速度。
※雅可比迭代与高斯赛德尔迭代:
雅可比迭代法可写为矩阵形式,Jacobi迭代矩阵为 B1=BJ =D-1(L+U)
高斯—塞德尔迭代法可写为矩阵形式,G-S迭代矩阵为
B2 = BG =(D-L)-1U
定义1 设n 阶矩阵A=(aij)n×n,如果