python对逻辑回归进行显著性检验_将sklearn逻辑回归系数与稀疏矩阵中的项联系起来,得到统计显著性/C.I...

本文介绍了如何使用sklearn进行逻辑回归,并探讨如何将模型系数与稀疏矩阵中的特征关联。同时,文章提出了如何获取类似R语言glm函数提供的统计显著性和置信区间的方法。
部署运行你感兴趣的模型镜像

我使用sklearn运行了一个逻辑回归,使用类似于下面的代码:from pandas import *

from sklearn.feature_extraction.text import CountVectorizer

from sklearn import linear_model

vect= CountVectorizer(binary =True)

a = read_table('text.tsv', sep='\t', index_col=False)

X = vect.fit_transform(c['text'].values)

logreg = linear_model.LogisticRegression(C=1)

d = logreg.fit(X, c['label'])

d.coef_

现在我想将d.coef_u中的值与构成稀疏矩阵X中的行的唯一项相关联。正确的方法是什么?似乎不能让它工作,即使它似乎应该有一个词汇表属性。我得到:

^{pr2}$

更进一步,如果我想得到这些系数的统计显著性和置信区间(沿着R的glm得到的结果),这是可能的吗?e、 g##

## Call:

## glm(formula = admit ~ gre + gpa + rank, family = "binomial",

## data = mydata)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.627 -0.866 -0.639 1.149 2.079

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -3.98998 1.13995 -3.50 0.00047 ***

## gre 0.00226 0.00109 2.07 0.03847 *

## gpa 0.80404 0.33182 2.42 0.01539 *

## rank2 -0.67544 0.31649 -2.13 0.03283 *

## rank3 -1.34020 0.34531 -3.88 0.00010 ***

## rank4 -1.55146 0.41783 -3.71 0.00020 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 499.98 on 399 degrees of freedom

## Residual deviance: 458.52 on 394 degrees of freedom

## AIC: 470.5

##

## Number of Fisher Scoring iterations: 4

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值