两组回归系数差异检验_什么!看调节效应图能看出回归系数?Q群答疑20200329

本次答疑涵盖了回归系数差异检验的选择依据、高相关维度的二阶处理、因子分析的AVE和CR值优化、CMV处理、简单斜率法判断调节效应、中介效应模型的构建与解释、样本量确定、变量类型混合分析等多个统计学问题。同时讨论了调节中介模型中系数变化的解释以及潜变量建模的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间  20200329  15:00-16:00

更多内容可关注微信公众号:邱宗满

公众号内文章全部开放转载,但须标明出处。如需改动原文或长期转载,可联系qiuzongman@foxmail.com。

   

1.将人口特征变量和自变量、因变量做卡方与方差分析,能否作为控制变量选取的依据?

    答:可以。一般来说,我们将某些变量作为控制变量的理由不外乎是理论上有关或者数据分析上有关,而数据分析中,如果变量Var与我们的主要变量在独立样本t检验、方差分析、卡方分析(意味着因变量是分类变量)或者皮尔森相关等分析中显著,则可以此为理由,将其纳入模型。    

2.由于借鉴别人参与维度量表(含两个一阶),老师要求说明为什么要做二阶处理,所以能否将两个维度相关性高达0.91而判断其适合二阶呢?

    答:别人原量表里会有量表的使用说明,如果别人用了二阶分析,那么在论文里会有说明,只需将这些话转述给你的导师即可。两个维度相关很高,是做二阶的数据依据,却不是理论依据,能不能做二阶还是要看理论解释。另外,两个维度之间相关过高,可能存在共线性,并不一定能做出结果;而且仅有两个潜变量也不一定能做出二阶的结果,就如同一阶潜变量一样,对应的指标应该尽量在3个及3个以上。    

3.验证性因子分析后AVE和CR值不理想怎么办?

    答:如果是心理学上的量表,大部分不做AVE(Average Variance Extracted,平均方差萃取量),因为心理学上大部分为长量表,做因子分析时因子载荷都不是很高,所以研究者们都避免了对自己不利的指标。当然,这个指标表示我们对题项信息的利用程度,AVE一般使用0.5的标准,表示我们提取了题项一半的信息,这个门槛其实是应该的。另外,营销和管理领域做问卷调查比较喜欢AVE指标,这些领域的问卷维度经常是参考他人而编制,并删除较多质量差的题项,最后留下质量高的题项,因此AVE就容易达标。    

4.同源误差(Common MethodVariance, CMV)超过40%有方法能处理吗?

    答:如果是未收集数据前,应该做好整个流程设计避免这个问题,还可以设置标记变量(Markervariable)等。如果数据已经收集来了,而在EFA的检测中首个因子解释率超过40%,可以简单的更换方法,例如采用CFA单因子检测。如果原本做的是潜变量分析,也进行多个因子的CFA,则可以使用添加了方法因子的CFA以检测同源误差。具体可以见我在B站视频的第15个。如果这些方法都解决不了问题,则应该考虑考虑Williams的论文里提供的方法,相关文献来源在视频课件中都有提供。但是,一旦存在较严重的CMV,则不太适合继续分析,所以Williams的论文里尽管提出了许多处理方法,却很少被使用。    

5.如何从简单斜率(图)看调节效应是否存在呢?如果调节项显著,在调节变量M±1SD的时候,简单斜率都显著,这种情况下也是存在调节效应吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值