基于python的房价分析国内外研究现状_Python数据分析 | 波士顿房价回归分析

分析目标:

将波士顿房价的数据集进行描述性数据分析、预测性数据分析(主要用了回归分析),可用于预测房价。

数据集介绍:

卡内基梅隆大学收集,StatLib库,1978年,涵盖了麻省波士顿的506个不同郊区的房屋数据。

一共含有506条数据。每条数据14个字段,包含13个属性,和一个房价的平均值。腾讯文档​docs.qq.com

一、数据预处理

①导入常用的数据分析库

#导入Python常用数据分析的库

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

sns.set() #设置画图空间为 Seaborn 默认风格

names=['CRIM','ZN','INDUS','CHAS','NOX','RM','GE','DIS','RAD','TAX','PRTATIO','B','LSTAT','PRICE']

boston=pd.read_csv("/Users/glenji/Desktop/housing.csv",names=names,delim_whitespace=True)

boston.head(10)

②指标解释:

#指标解释

#CRIM犯罪率

#ZN住宅用地所占比例

#INDUS城镇中非住宅用地所占比例

#CHAS是否穿过查尔斯河

#NOX氮氧化污染物

#RM每栋住宅的房间数

#GE1940年以前建成的自住单位的比例

#DIS距离5个波士顿的就业中心的加权距离

#RAD距离高速公路的便利指数

#TAX每一万美元的不动产税率

#PRTATIO城镇中的教师学生比例

#B城镇中的黑人比例

#LSTAT低收入群比例

#PRICE价格

查看数据集大小:

#查看数据集大小

boston.shape

查看各字段基础信息:

boston.info()

查看缺失值:

#查看缺失值

boston.isnull().sum()

二、描述性数据分析

①查看描述性数据统计:可以看到各个字段的均值、中位数、标准差等。

#描述性数据统计

boston.describe()

②查看各字段的相关性:可以看到房子价格跟住宅的房间数成比较强的正相关,而跟低收入人数比例有比较强的负相关。

#查看相关性

corrboston = boston.corr()

corrboston

plt.figure(figsize=(10,10)) #设置画布

sns.heatmap(corrboston,annot=True,cmap='RdGy')

plt.show()

③查看是否穿过查尔斯河对房价的影响:可以看到被河流穿过的豪宅仅占比6.92%,而被查尔斯河穿过的豪宅,比没有被穿过的豪宅平均贵了28.7%。

#查看是否穿过查尔斯河的两类占比

#可以看到被河流穿过的豪宅仅占比6.92%

fig,ax = plt.subplots(1,2,figsize=(10,5))

boston['CHAS'].value_counts().plot.pie(ax=ax[0],shadow=False,autopct='%1.2f%%')

ax[0].set_ylabel('') #设置y轴标签

ax[0].set_xlabel('CHAS') #设置x轴标签

sns.countplot('CHAS',data=boston,ax=ax[1])

ax[1].set_ylabel('')

ax[1].set_xlabel('CHAS')

plt.show()

#再来看看两种不同类型的房子的价值如何

#可以看到被查尔斯河穿过的豪宅,比没有被穿过的豪宅平均贵了28.7%

bostonCHAS = boston[['CHAS','PRICE']] #先将CHAS和PRICE两列数据取出

bostonCHAS1=bostonCHAS.pivot_table(values='PRICE', #计算的值

index='CHAS', #透视的行,分组的依据

aggfunc='mean') #聚合函数

# 对透视表进行降序排列

bostonCHAS1 = bostonCHAS1.sort_values(by='PRICE', # 排序依据

ascending=False # 是否升序排列

)

bostonCHAS1

④看看各个字段与价格的散点图:以初步了解价格与相应字段的关系。可以看到不是所有的字段与价格都有较强的相关关系,但本例中不涉及多元线性回归的向后删除,仅做最简单的多元性性回归的分析处理。

x_data = boston[['CRIM','ZN','INDUS','CHAS','NOX','RM','GE','DIS','RAD','TAX','PRTATIO','B','LSTAT']] # 导入所有特征变量

y_data = boston[['PRICE']] # 导入目标值(房价)

plt.figure(figsize=(18,10))

for i in range(13):

plt.subplot(4,4,i+1)

plt.scatter(x_data.values[:,i],y_data,s = 5) #.values将DataFrame对象X_df转成ndarray数组

plt.xlabel(names[i])

plt.ylabel('Price')

plt.title(str(i+1)+'. '+names[i]+' - Price')

plt.tight_layout()

plt.show()

三、预测性数据分析

①选取线性回归字段:

from sklearn import linear_model

#定义线性回归的x和y变量

x=pd.DataFrame(boston[['CRIM','ZN','INDUS','CHAS','NOX','RM','GE','DIS','RAD','TAX','PRTATIO','B','LSTAT']])

y=boston['PRICE']

x

②建立线性回归模型,并调用:可以看到各个字段的回归系数,可以写出一个回归方程:y=ax1+bx2+……,理论上你知道一套新房子的各个字段,带入公式即可预测出价格。

#建立线性回归模型,并将变量带入模型进行训练。

clf = linear_model.LinearRegression()

clf.fit(x, y)

#查看回归系数。本例为一元回归,所以只有一个系数。

print('回归系数:', clf.coef_)

③计算回归系数:计算出的回归系数为0.74,回归拟合效果较好。

from sklearn.metrics import r2_score

score = r2_score(y, y_pred)

score

④可以进行简单的预测:

y_pred =clf.predict(x)

print(y_pred)

以上,谢谢,喜欢的话可以关注一下。

参考资料:基于sklearn波士顿房价预测--线性回归实战_远方-CSDN博客_波士顿房价预测模型​blog.csdn.nettensorflow入门(一)波士顿房价数据集_奋斗在阿尔卑斯的皮卡丘的博客-CSDN博客​blog.csdn.net回归模型--波士顿房价数据集(《python 深度学习》)​blog.csdn.net小牛的学习笔记--波士顿房价数据回归分析_安分守己的蒟蒻的博客-CSDN博客​blog.csdn.net

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页