python3爬取微博评论api情感分析_利用python写一个爬虫爬取京东商品评论分析情感倾向并绘制词云...

问题陈述

近年来,网上购物已经越来越流行,人们对于评论一个商品的行为习惯也多多少少受到商家的影响。

类似于这样的好评请求,好心的消费者由于见惯了,渐渐的就形成了好评的习惯。一味好评,会拉高商品的好评率,但是这对于新客户来说是非常具有误导性的,可能会让他们买了不好的产品。

京东的评价机制,没有评价的话,默认好评,结果不显示。

有些顾客即使说出了差评,但是在打分上还是会给5星好评。

我们迫切的需要一款可以查明真实评价的渠道。

需要的信息

京东商品爬取,需要以下信息,①商品的名称;②商品的价格;③商品的评论;④商品的好评率、中评率和差评率。

爬虫实现

爬取所有商品的基本信息

按照关键字搜索特定商品,或直接爬取https://www.jd.com/allSort.aspx

def get_cellphones_list(page):

header = {'Connection': 'close',

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.117 Safari/537.36'}

url = "https://search.jd.com/Search?keyword=%E6%89%8B%E6%9C%BA&enc=utf-8&qrst=1&rt=1&stop=1&vt=2&wq=%E6%89%8B%E6%9C%BA&cid2=653&cid3=655&page=" + str(

page) + "&s=1&click=0"

# 请求腾讯新闻的URL,获取其text文本

wbdata = requests.get(url, headers=header).text

# 对获取到的文本进行解析

soup = BeautifulSoup(wbdata, 'lxml')

# 从解析文件中通过select选择器定位指定的元素,返回一个列表

cellphones = soup.select("li.gl-item > div.gl-i-wrap > div.p-img > a")

cell_id = soup.find_all("li", class_="gl-item")

ret_list = []

# 对返回的列表进行遍历

for (a_tags, li_tags) in zip(cellphones, cell_id):

# 提取出标题和链接信息

skuid = li_tags.get("data-sku")

link = a_tags.get("href")

url = "https://item.jd.com/" + str(skuid) + ".html"

try:

html = requests.get(url, headers=header).text

except:

print(time.asctime(time.localtime(time.time())) + ": Connection refused by the server..")

print("Let me sleep for 5 seconds")

print("ZZzzzz...")

time.sleep(5)

print(time.asctime(time.localtime(time.time())) + ": Was a nice sleep, now let me continue...")

continue

product_name_whole_html = BeautifulSoup(html, 'lxml')

# 从解析文件中通过select选择器定位指定的元素,返回一个列表

product_name_html = product_name_whole_html.select("div.p-name > a")

product_name = product_name_html[0].get_text()

data = {

'skuid': skuid,

'product_name': product_name,

'link': link

}

ret_list.append(data)

return ret_list

def get_cellphone_list_whole_jd():

i = 0

while i < 200:

list_data = get_cellphones_list(i)

for p in list_data:

# 获取数据库链接

connection = pymysql.connect(host="localhost", user="root", passwd="123123", db="jd", port=3306,

charset="utf8")

try:

# 获取会话指针

with connection.cursor() as cursor:

# 创建sql语句

sql = "insert into jd.jd_product (`skuid`, `product_name`,`link`) values (%s,%s,%s)"

# 执行sql语句

cursor.execute(sql, (p["skuid"], p["product_name"], p["link"]))

# 提交数据库

connection.commit()

finally:

connection.close()

print(time.asctime(time.localtime(time.time())) + ": 手机信息第" + str(i + 1) + "页已存入数据库")

i += 1

{% asset_img mysql数据库.png mysql数据库 %}

爬取某商品所有评论

为保证爬取顺利,开启三个ip进行爬取:

domains = ["http://jdapi.tellyouwhat.cn", "https://club.jd.com","http://jdapi2.tellyouwhat.cn"]

每次从中任取一个域名进行组合

def crawlProductComment(url, skuid):

# 读取原始数据(注意选择gbk编码方式)

try:

html = urllib.request.urlopen(url).read().decode('gbk', 'ignore')

except Exception:

return -1

data = json.loads(html)

if len(data['comments']) == 0:

print(time.asctime(time.localtime(time.time())) + "\nSeems no more data to crawl")

return -1

for comment in data['comments']:

product_name = comment['referenceName']

comment_time = comment['creationTime']

content = comment['content']

# 数据库操作

# 获取数据库链接

connection = pymysql.connect(host="localhost", user="root", passwd="123123", db="jd", port=3306, charset="utf8")

try:

# 获取会话指针

with connection.cursor() as cursor:

# 创建sql语句

sql = "insert into jd.jd_items (`skuid`, `productName`,`commentTime`,`content`) values (%s,%s,%s,%s)"

# 执行sql语句

cursor.execute(sql, (skuid, product_name, comment_time, content))

# 提交数据库

connection.commit()

finally:

connection.close()

return 1

爬取某商品的价格

def get_product_price(skuid, url="https://p.3.cn/prices/mgets?skuIds="):

price_json = urllib.request.urlopen(url + str(skuid))

data = json.load(price_json)

price = data[0]['p']

return price

对评论进行情感分析

def process(skuid):

sum_sentiment = 0

good_counter = 0

just_so_so_counter = 0

bad_counter = 0

datas = read_data(skuid)

comments_concat = ""

for data in datas:

# print(data[3])

comments_concat += data[3].replace("hellip", "").replace("rdquo", "")

sentiment = SnowNLP(data[3]).sentiments

if sentiment > 0.8:

good_counter += 1

elif sentiment > 0.4:

just_so_so_counter += 1

else:

bad_counter += 1

sum_sentiment += sentiment

# print(data[3])

# print(sentiment)

print("-----------------共计" + str(len(datas)) + "条评论------------------------")

print("-----------------0.8以上" + str(good_counter) + "条评论------------------------")

print("-----------------0.4-0.8 " + str(just_so_so_counter) + "条评论------------------------")

print("-----------------0.4以下" + str(bad_counter) + "条评论------------------------")

print("average sentiment is {}".format(sum_sentiment / len(datas)))

评论性质

情感分析得分区间

好评

0.8~1.0

中评

0.4~0.8

差评

0~0.4

官网好评达到99%,然而我们利用情感分析得出的结果是76%。

绘制词云

def draw_wordcloud(text):

font_path = "‪C:\\Windows\\Fonts\\1.ttf"

weight = 1000

height = 1000

bg_img = imread("jdlogo.png")

wordcloud = WordCloud(font_path=font_path,

width=weight,

height=height,

mask=bg_img).generate(text)

plt.imshow(wordcloud, interpolation='bilinear')

plt.axis("off")

plt.show()

结论

对京东商品的评论分析效果还是很不错的,能找出某商品是否值得购买,对好评率会不会有误导性能提出较为明确的判断依据。

改进建议:引入多线程和异步HttpGet,以提升爬虫效率和稳定性,进一步一体化程序,使之成为一项webservice,可以通过网页直接查询该商品是否值得买。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值