python中文识别库_小猪的Python学习之旅 —— 13.文字识别库pytesseract初体验

引言

度过了短暂的春节假期,又要开始继续搬砖了,因为还处于节后

综合征,各种散漫,不想看任何代码相关的东西,根本挤不出学习热情...

恰逢前几天,公司的UI妹子安利了一个卖萌的新番:小木乃伊到我家

就是图中的这四只小东西,敲可爱的说,分别叫:

小伊(木乃伊),可尼(小鬼,牛),啊勇(龙),胖嘟嘟

UI妹子尤其喜欢可尼,是挺萌的,突然想找些相关的手机或者电脑壁纸,

壁纸没找到,却在 小木乃伊到我家吧 里找到了一些自制的表情包:

表情都很有趣嘛,写个脚本把图片都爬下来?走一波流程:

Step 1:Network抓包看下返回的数据是否和Element一致,

或者说有我们想要的数据,而不是通过JS黑魔法进行加载的;

复制下第一个图的图片链接,到Network选项卡里的Response

里查找以下,嗯,找得到,可以:

Step 2:滚动到底,抓包没有发现Ajax动态加载数据的踪迹

Step 3:点击第二页,抓包发现了Ajax加载的痕迹!!!

同样拿第一个图的url搜下,同样可以找到

三个参数猜测pn为page_number,即页数,PostMan或者自己

写代码模拟请求,记得塞入Host和X-Requested-With,验证pn=1

是否为第一页数据,验证通过,即所有页面数据都可以通过这个

接口拿到;

Step 4:先加载拿到末页是第几页,然后走一波循环遍历即可

解析数据获得图片url,写入文件,使用多个线程进行下载

比较简单,就不详解了,直接给出代码,看不懂的自己复习去:

# 抓取百度贴吧某个帖子里的所有图片

import coderpig_n as cpn

import requests

import time

import threading

import queue

tiezi_url = "https://tieba.baidu.com/p/5522091060"

headers = {

'Host': 'tieba.baidu.com',

'User-Agent': cpn.user_agent_dict['chrome'],

}

pic_save_dir = 'output/Picture/BaiduTieBa/'

pic_urls_file = 'tiezi_pic_urls.txt'

download_q = queue.Queue() # 下载队列

# 获得页数

def get_page_count():

try:

resp = requests.get(tiezi_url, headers=headers, timeout=5)

if resp is not None:

soup = cpn.get_bs(resp.text)

a_s = soup.find("ul", attrs={'class': 'l_posts_num'}).findAll("a")

for a in a_s:

if a.get_text() == '尾页':

return a['href'].split('=')[1]

except Exception as e:

print(str(e))

# 下载线程

class PicSpider(threading.Thread):

def __init__(self, t_name, func):

self.func = func

threading.Thread.__init__(self, name=t_name)

def run(self):

self.func()

# 获得每页里的所有图片

def get_pics(count):

while True:

params = {

'pn': count,

'ajax': '1',

't': int(time.time())

}

try:

resp = requests.get(tiezi_url, headers=headers, timeout=5, params=params)

if resp is not None:

soup = cpn.get_bs(resp.text)

imgs = soup.findAll('img', attrs={'class': 'BDE_Image'})

for img in imgs:

cpn.write_str_data(img['src'], pic_urls_file)

return None

except Exception as e:

pass

pass

# 下载线程调用的方法

def down_pics():

global download_q

while not download_q.empty():

data = download_q.get()

download_pic(data)

download_q.task_done()

# 下载调用的方法

def download_pic(img_url):

while True:

proxy_ip = {

'http': 'http://' + cpn.get_dx_proxy_ip(),

'https': 'https://' + cpn.get_dx_proxy_ip()

}

try:

resp = requests.get(img_url, headers=headers, proxies=proxy_ip, timeout=5)

if resp is not None:

print("下载图片:" + resp.request.url)

pic_name = img_url.split("/")[-1]

with open(pic_save_dir + pic_name, "wb+") as f:

f.write(resp.content)

return None

except Exception as e:

pass

if __name__ == '__main__':

cpn.is_dir_existed(pic_save_dir)

print("检索判断链接文件是否存在:")

if not cpn.is_dir_existed(pic_urls_file, mkdir=False):

print("不存在,开始解析帖子...")

page_count = get_page_count()

if page_count is not None:

headers['X-Requested-With'] = 'XMLHttpRequest'

for page in range(1, int(page_count) + 1):

get_pics(page)

print("链接已解析完毕!")

headers.pop('X-Requested-With')

else:

print("存在")

print("开始下载图片~~~~")

headers['Host'] = 'imgsa.baidu.com'

pic_list = cpn.load_list_from_file(pic_urls_file)

threads = []

for pic in pic_list:

download_q.put(pic)

for i in range(0, len(pic_list)):

t = PicSpider(t_name='线程' + str(i), func=down_pics)

t.daemon = True

t.start()

threads.append(t)

download_q.join()

for t in threads:

t.join()

print("图片下载完毕")

运行结果:

接着在和UI妹子聊天的时候就可以拿这些表情来斗图了,但是问题来了,

总共有165个图,我每次想说什么都要打开图片一个个看文字是否

符合场景,然后才发,有点呆,而且浪费时间,有没有什么快点

找到表情的方法呢?

答:直接把表情里的文字作为图片名不就好了,直接文件搜索搜关键字;

但是问题又来了,一张张去改文件名?多呆哦!

突然想起之前看过一篇头脑王者答题辅助脚本的文章,就是

利用OCR文字识别,把识别出来的文字丢百度上搜索,选项频度最高

的一般就是正确答案,可以试一波这个套路,谷歌为我们提供了一个

免费的ORC文字识别引擎:Tesseract

1.装一波环境

稳定版本是3.0,4.0版本还处于研发,一开始以为新版的肯定牛逼

一些,装了4.0的发现对于中文的识别效率超低,差太远了,后来

又换回了3.0版本,情况稍微好一些,当然可以通过其他方法提高

中文识别率,图片裁剪,调节对比度,黄底黑字,自己训练语言库等,

不是本节的学习范畴,本节写个简单的例子了解下怎么用而已~

Ubuntu 14.04 环境安装(其他系统环境后续用到再补充...)

1.安装tesseract-ocr

sudo apt-get install tesseract-ocr

tesseract --version

2.安装pytesseract与Image

sudo pip install pytesseract

sudo pip install Image

3.下载tesseract中文简体字库

默认安装后是不带中文简体库的,官方仓库走一波:

记得选择版本Tag,3.0的tesseract-ocr是用不了4.0的字库的!!!

如果你下错了,调用的时候会报3.0用不了4.0的字库的错误!!!

这两个就是对应中文简体与繁体:

字库下载后需要放到下面的目录下:/usr/share/tesseract-ocr/tessdata

然后你发现字库文件无法拷贝到该目录下,因为需要权限,这里可以通过

命令行拷贝一波:

sudo cp '/home/jay/下载/chi_sim.traineddata' /usr/share/tesseract-ocr/tessdata

前面是源文件,后面是拷贝到哪个目录下。

好了,到此就准备完成了,接着写个简单的程序来识别一波!

2.识别一波图片

代码忒简单,创建一个Image对象,调用下pytesseract.image_to_string()方法

就能识别文字了,参数依次是Image对象,识别语言类型,chi_sim中文简体

import pytesseract

from PIL import Image

image = Image.open('1.png')

text = pytesseract.image_to_string(image,)

print(text.replace(" ", ""))

随手截一波掘金首页的分类栏:

运行一波:

识别结果有点感人,调一张表情图试试:

识别结果:

???都识别出来什么东西,后面试了几张图片我还发现不止识别

错误,有时连字都识别不出来...在不自己去训练字体库的情况下,

中文识别率真心感人,不过最大的有点优点还是:Tesseract免费。

识别数字或者英语的时候,还凑合,随手复制一段英文:

设置下lang='eng',输出结果:

免费的识别率低,试试收费的怎样,百度云OCR

3.试试百度云OCR

收费,每天免费500次,拿来完成我们这个图片命名的小脚本足矣!

配置流程:

2.创建一个应用,然后记下API Key 和 Secret Key 程序里要用

3.点右上角->用户中心,抄下自己的用户ID

4.pip命令安装一波

sudo pip install baidu-aip

编写简单代码:

from aip import AipOcr

# 新建一个AipOcr对象

config = {

'appId': 'XXX',

'apiKey': 'YYY',

'secretKey': 'ZZZ'

}

client = AipOcr(**config)

# 读取图片

def get_file_content(file_path):

with open(file_path, 'rb') as fp:

return fp.read()

# 识别图片里的文字

def img_to_str(image_path):

image = get_file_content(image_path)

# 调用通用文字识别, 图片参数为本地图片

result = client.basicGeneral(image)

# 结果拼接返回

if 'words_result' in result:

return '\n'.join([w['words'] for w in result['words_result']])

if __name__ == '__main__':

print(img_to_str('1.png'))

试试上面掘金的那个,输出结果:

啧啧,可以的,试试搞基那个表情?

嗯,还是有点小错误,在文档里找到:

把basicGeneral 改为 basicAccurate,结果:

啧啧,完美识别,稍微慢了一点点,接下来把代码完善下,

把所有的图片重命名一波咯!

4.实战:利用百度OCR识别自动修改文件名

遍历文件夹,获得所有的图片路径,然后文字识别一波,获得结果集

里长度最长的字符串作为文件名,能识别的就修改下文件名,完整代码

如下:

import os

from aip import AipOcr

# 新建一个AipOcr对象

config = {

'appId': 'XXX',

'apiKey': 'YYY',

'secretKey': 'ZZZ'

}

client = AipOcr(**config)

pic_dir = r"/home/jay/图片/BaiduTieBa/"

# 读取图片

def get_file_content(file_path):

with open(file_path, 'rb') as fp:

return fp.read()

# 识别图片里的文字

def img_to_str(image_path):

image = get_file_content(image_path)

# 调用通用文字识别, 图片参数为本地图片

result = client.basicGeneral(image)

# 结果拼接返回

words_list = []

if 'words_result' in result:

if len(result['words_result']) > 0:

for w in result['words_result']:

words_list.append(w['words'])

file_name = get_longest_str(words_list)

print(file_name)

os.rename(image_path, pic_dir + str(file_name).replace("/", "") + '.jpg')

# 获取字符串列表中最长的字符串

def get_longest_str(str_list):

return max(str_list, key=len)

# 遍历某个文件夹下所有图片

def query_picture(dir_path):

pic_path_list = []

for filename in os.listdir(dir_path):

pic_path_list.append(dir_path + filename)

return pic_path_list

if __name__ == '__main__':

pic_list = query_picture(pic_dir)

if len(pic_list) > 0:

for i in pic_list:

img_to_str(i)

运行结果:

要注意一点,高精度版免费只有50次,我一开始不知道,后面跑程序

突然卡住一直不动,这点要注意,后面还是用回了普通模式,所以有

些文件名并不完全是对的,就调调API的事,非常简单,项目有极大

刚需要用到文字识别的自行去官网了解吧~

5.小结

本节简单的了解了一下pytesseract这个免费的OCR识别库,

对于中文的识别率不高,后面试了下百度云OCR,顺道写了

一个简单的实战项目,都比较简单,那么本节就到这里啦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值