双层for循环时间复杂度_一篇文章带你看懂时间复杂度

本文详细介绍了时间复杂度的概念,通过实例分析了如何计算时间复杂度,包括循环次数最多原则、加法原则和乘法原则,并列举了常见的时间复杂度类型,如O(1)、O(n)、O(logn)和O(nlogn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

b981ae41e33109e3417c56d18c50c81e.png

一篇文章带你看懂时间复杂度

如果你还在发愁究竟怎么计算时间复杂度和空间复杂度,那你是来对地方了!

名词解释(枯燥乏味的解释,为了文章完整性):

在计算机科学中,时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

一.时间复杂度的表示方法

其实就是算法(代码)的执行效率,算法代码的执行时间。我们来看下面一个简单的代码:

int 

假设,每行代码的执行时间为t,那么这块代码的时间就是(2n+2)*t

由此得出:代码执行时间T(n)与代码的执行次数是成正比的!

那么我们来看下一个例子:

int 

同理,该代码执行时间为(2n*n+n+1)*t,没意见吧?继续往后看!

  • 注意:在数据结构/算法中,通常使用T(n)表示代码执行时间,n表示数据规模大小,f(n)表示代码执行次数综合,所以上面这个例子可以表示为f(n)=(2n*n+n+1)*t,其实就是一个求总和的式子,O(大写O)表示代码执行时间与f(n)成正比例。

根据上面两个例子得出结论:代码的执行时间 T(n)与每行代码的执行次数 n 成正比 ,人们把这个规律总结成这么一个公式: T(n) = O(f(n))

所以呢,第一个例子中的 T(n)=O(2n+1),第二个例子中的 T(n)=O(2n*n+n+1),这就是时间复杂度表示法,也叫大O时间复杂度表示法。

但是,大O时间复杂度并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度,简称时间复杂度

与泰勒公式相反的是,算了,扯哪去了......

当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,所以可以直接忽略他们,只记录一个最大的量级就可以了,所以上述两个例子实际他们的时间复杂度应该记为:T(n)=O(n) ,T(n)=O(n*n)

我想你应该明白大致是怎么回事了,那么我们来看看如何去计算它?

二.时间复杂度的分析与计算方法

(1)循环次数最多原则

我们上面说过了,当n变得越来越大时,公式中的低阶,常量,系数三部分影响不了其增长趋势,可以直接忽略他们,只记录一个最大的量级就可以了。因此我们在计算时间复杂度时,只需关注循环次数最多的那段代码即可

int 

(2)加法原则

int 

上述例子中,最大的两块代码时间复杂度分别为 O(n)和 O(n*n),其结果本应该是:T(n)=O(n)+O(n * n),我们取其中最大的量级,因此整段代码的复杂度为:O(n * n)

所以得出结论:量级最大的那段代码时间复杂度=总的时间复杂度

(3)乘法原则

嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

void 

因此这段代码时间复杂度为O(n) * O(n) = O(n*n) = O(n*n)

同理,如果将其中一个n换成m,那么它的时间复杂度就是O(n*m)

三.常见的几种时间复杂度

(1)O(1)常量级时间复杂度

void 

相信你也看明白了,O(1)不是说代码只有一行,这个1它代表的是一个常量,即使它有以前一万行这样的也是O(1),因为它是固定的不会变化(也就是常量),所以凡是常量级复杂度代码,均记为O(1)

(2)常见的O(n)复杂度

void 

不用多说了吧!继续!

(3)O(logn),O(nlogn) ,这就有点难度了!

首先我们来回忆以下换底公式: $$ loga(b)*logc(a) = logc(b) $$ 记住公式啊,来看例子:

void 

可以看出,i = i * 2这行代码执行次数是最多的,那么到底执行了多少次呢?

第一次 i=2,执行第二次 i=4,执行第三 次 i=8.........

假设它执行了x次,那么x的取值为: $$ log2(n) $$ 当上述代码的2改成3的时候,x的取值也就是: $$ log3(n) $$ 当然不管log的底数是几,是e也好,是10也罢,统统记为: $$ log(n) $$ 这是为啥子念?由换底公式可以计算出: $$ log3(n) = log3(2)*log2(n) $$ 换底之后,可以看出log3(2)其实就是一个常数,忽略它!而在这场游戏中,log默认就是以2为底的,所以统统记为O(logn)

void 

所以这个nlogn也很好理解了吧!

半夜码字腰酸背痛,其他的就不多赘述了,举一反三你可以的,喜欢的话帮忙点个赞吧!

### 双层嵌套循环时间复杂度分析 当考虑两个嵌套的`for`循环时,内层循环执行的次数依赖于外层循环当前迭代的状态。如果内外两层循环都遍历整个数组或列表,则每次外部循环都会触发内部循环完全执行一次。 假设存在如下形式的双重循环结构: ```python for i in range(n): # 外部循环 for j in range(m): # 内部循环 operation() # 执行某操作 ``` 这里`operation()`代表任意常数时间内完成的操作。对于上述代码片段而言,每当外部变量`i`增加时,内部变量`j`会从头到尾走一遍完整的序列。因此,在最坏情况下(即每次都达到最大范围),总的运算量将是两者相乘的结果,也就是`n * m`次调用`operation()`[^1]。 #### 特殊情况下的简化表达 - 如果内外层数组长度相同(`m=n`),那么总的时间开销可以写作\(T(n)=n*n=n^{2}\),此时时间复杂度记作O(n²)。 - 当其中一个维度固定不变(比如总是重复特定数量k次), 如下面的例子所示: ```python for i in range(k): # k 是一个小常数 for j in range(n): # n 随着输入变化而改变 operation() ``` 这种情形下,尽管看起来有两重循环,但由于其中一层仅涉及有限步长,所以整体性能仍主要取决于另一维的变化趋势——这里是线性的增长模式,最终得到的是O(n*k)≈O(n)这样的结论[^2]。 综上所述,针对给定的具体场景来决定如何估算其实际表现非常重要;不过一般来讲,只要涉及到多级嵌套控制流语句,就需要特别留意可能来的指数级别上升的风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值