均值定理六个公式_三角形的面积公式九叙

本文推导了涉及向量和平面几何的三角形面积公式,并给出了直角四面体中三角形面积及高的计算方法。通过向量运算简化了计算步骤,为解决相关问题提供了新思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ac8b3fc3df1b883ce27e49f2f581e97d.png

本文将推导出一些与向量和立体几何相关的三角形面积公式。

以三角形ABC的一个顶点为起点,另外两个顶点为终点,则有六个向量,我们分别求出它们的数量积:

我们记

,从以上三式中可以解出:

,再代入秦九韶公式中,可得:

公式六十八。

公式六十九

211bfd8ae538c4842def8776e8eff1f4.png

我们将两个公式分开,就是为了提醒读者在向量运算时使用公式六十八,平面几何运算时使用公式六十九。因为向量既可以是平面向量,也可以是空间向量,所以公式六十八在空间中依然成立。特别的,当向量以坐标形式表示时,计算尤为简洁。

对于空间向量,《三角形的面积公式七叙》中已经给出了向量积的公式,这里,我们再给出一个用第四点指向三个顶点的向量的公式。

公式七十

22e535985afd1b5121f78ae373c03d51.png

其中O为不与A、B、C重合的一点。

证明如下:

00fba69e09cb182a424ebbc09e87ebcd.png

道理很简单,不必详述,一般情况下,O都会选择坐标原点。

接下来,我们再探讨一个立体几何问题。

e3afd3696926de5f0568dc2622452325.png

如上图所示,O-ABC是一个直角四面体,即OA,OB,OC两两相互垂直,长度分别为a',b',c'。h为O到面ABC的距离,即以O为顶点,面ABC为底面的四面体的高,我们来求解一下三角形ABC的面积和高h。三角形ABC的量表示方式不变。

由勾股定理:

带入秦九韶公式:

记为公式七十一

同时,我们发现:

于是:

即:

记为公式七十二。同时我们可以把此式看成立体几何的勾股定理,直角四面体对应于直角三角形,边长对应于面的面积,这种把线看成是面的类比,用在立体几何中,有时候会显得特别有用,我们将会在日后说到四面体时详细论述。

将四面体的体积以面ABC为底面和以面BOC为底面,分别做体积公式,

即:

即:

即:

于是:

变形可以得到:

总结:向量形式的公式在有关向量的问题中会显得比较有用,直角四面体相关的面积公式可以看成是一类特殊问题的求解,它所反映出来的与平面几何中的对应关系是值得深入讨论的,记住这些相似的公式,往往可以给我们解决问题带来全新的思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值