
本文将推导出一些与向量和立体几何相关的三角形面积公式。
以三角形ABC的一个顶点为起点,另外两个顶点为终点,则有六个向量,我们分别求出它们的数量积:
我们记
公式六十八。
公式六十九:

我们将两个公式分开,就是为了提醒读者在向量运算时使用公式六十八,平面几何运算时使用公式六十九。因为向量既可以是平面向量,也可以是空间向量,所以公式六十八在空间中依然成立。特别的,当向量以坐标形式表示时,计算尤为简洁。
对于空间向量,《三角形的面积公式七叙》中已经给出了向量积的公式,这里,我们再给出一个用第四点指向三个顶点的向量的公式。
公式七十:

其中O为不与A、B、C重合的一点。
证明如下:

道理很简单,不必详述,一般情况下,O都会选择坐标原点。
接下来,我们再探讨一个立体几何问题。

如上图所示,O-ABC是一个直角四面体,即OA,OB,OC两两相互垂直,长度分别为a',b',c'。h为O到面ABC的距离,即以O为顶点,面ABC为底面的四面体的高,我们来求解一下三角形ABC的面积和高h。三角形ABC的量表示方式不变。
由勾股定理:
带入秦九韶公式:
记为公式七十一。
同时,我们发现:
于是:
即:
记为公式七十二。同时我们可以把此式看成立体几何的勾股定理,直角四面体对应于直角三角形,边长对应于面的面积,这种把线看成是面的类比,用在立体几何中,有时候会显得特别有用,我们将会在日后说到四面体时详细论述。
将四面体的体积以面ABC为底面和以面BOC为底面,分别做体积公式,
即:
即:
即:
于是:
变形可以得到:
总结:向量形式的公式在有关向量的问题中会显得比较有用,直角四面体相关的面积公式可以看成是一类特殊问题的求解,它所反映出来的与平面几何中的对应关系是值得深入讨论的,记住这些相似的公式,往往可以给我们解决问题带来全新的思路。