python numpy逆_NumPy 线性代数

NumPy 线性代数

NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:

函数

描述

dot

两个数组的点积,即元素对应相乘。

vdot

两个向量的点积

inner

两个数组的内积

matmul

两个数组的矩阵积

determinant

数组的行列式

solve

求解线性矩阵方程

inv

计算矩阵的乘法逆矩阵

numpy.dot()

numpy.dot() 对于两个一维的数组,计算的是这两个数组对应下标元素的乘积和(数学上称之为内积);对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,它的通用计算公式如下,即结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组b的倒数第二位上的所有元素的乘积和:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])。

numpy.dot(a, b, out=None)

参数说明:

a : ndarray 数组

b : ndarray 数组

out : ndarray, 可选,用来保存dot()的计算结果

实例

importnumpy.matlibimportnumpyasnpa=np.array([[1,2],[3,4]])b=np.array([[11,12],[13,14]])print(np.dot(a,b))

输出结果为:

[[37 40]

[85 92]]

计算式为:[[1*11+2*13, 1*12+2*14],[3*11+4*13, 3*12+4*14]]

numpy.vdot()

numpy.vdot() 函数是两个向量的点积。 如果第一个参数是复数,那么它的共轭复数会用于计算。 如果参数是多维数组,它会被展开。

实例

importnumpyasnpa=np.array([[1,2],[3,4]])b=np.array([[11,12],[13,14]])# vdot 将数组展开计算内积print(np.vdot(a,b))

输出结果为:

130

计算式为:1*11 + 2*12 + 3*13 + 4*14 = 130

numpy.inner()

numpy.inner() 函数返回一维数组的向量内积。对于更高的维度,它返回最后一个轴上的和的乘积。

实例

importnumpyasnpprint(np.inner(np.array([1,2,3]),np.array([0,1,0])))# 等价于 1*0+2*1+3*0

输出结果为:

2

多维数组实例

importnumpyasnpa=np.array([[1,2],[3,4]])print('数组 a:')print(a)b=np.array([[11,12],[13,14]])print('数组 b:')print(b)print('内积:')print(np.inner(a,b))

输出结果为:

数组 a:

[[1 2]

[3 4]]

数组 b:

[[11 12]

[13 14]]

内积:

[[35 41]

[81 95]]

数组 a:

[[1 2]

[3 4]]

数组 b:

[[11 12]

[13 14]]

内积:

[[35 41]

[81 95]]

内积计算式为:

1*11+2*12, 1*13+2*14

3*11+4*12, 3*13+4*14

numpy.matmul

numpy.matmul 函数返回两个数组的矩阵乘积。 虽然它返回二维数组的正常乘积,但如果任一参数的维数大于2,则将其视为存在于最后两个索引的矩阵的栈,并进行相应广播。

另一方面,如果任一参数是一维数组,则通过在其维度上附加 1 来将其提升为矩阵,并在乘法之后被去除。

对于二维数组,它就是矩阵乘法:

实例

importnumpy.matlibimportnumpyasnpa=[[1,0],[0,1]]b=[[4,1],[2,2]]print(np.matmul(a,b))

输出结果为:

[[4 1]

[2 2]]

二维和一维运算:

实例

importnumpy.matlibimportnumpyasnpa=[[1,0],[0,1]]b=[1,2]print(np.matmul(a,b))print(np.matmul(b,a))

输出结果为:

[1 2]

[1 2]

维度大于二的数组 :

实例

importnumpy.matlibimportnumpyasnpa=np.arange(8).reshape(2,2,2)b=np.arange(4).reshape(2,2)print(np.matmul(a,b))

输出结果为:

[[[ 2 3]

[ 6 11]]

[[10 19]

[14 27]]]

numpy.linalg.det()

numpy.linalg.det() 函数计算输入矩阵的行列式。

行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。

换句话说,对于矩阵[[a,b],[c,d]],行列式计算为 ad-bc。 较大的方阵被认为是 2×2 矩阵的组合。

实例

importnumpyasnpa=np.array([[1,2],[3,4]])print(np.linalg.det(a))

输出结果为:

-2.0

实例

importnumpyasnpb=np.array([[6,1,1],[4, -2,5],[2,8,7]])print(b)print(np.linalg.det(b))print(6*(-2*7-5*8)-1*(4*7-5*2)+1*(4*8- -2*2))

输出结果为:

[[ 6 1 1]

[ 4 -2 5]

[ 2 8 7]]

-306.0

-306

numpy.linalg.solve()

numpy.linalg.solve() 函数给出了矩阵形式的线性方程的解。

考虑以下线性方程:

x + y + z = 6

2y + 5z = -4

2x + 5y - z = 27

可以使用矩阵表示为:

118142-7ab3daa7f65551e6.jpg

如果矩阵成为A、X和B,方程变为:

AX = B

X = A^(-1)B

numpy.linalg.inv()

numpy.linalg.inv() 函数计算矩阵的乘法逆矩阵。

逆矩阵(inverse matrix):设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。

实例

importnumpyasnpx=np.array([[1,2],[3,4]])y=np.linalg.inv(x)print(x)print(y)print(np.dot(x,y))

输出结果为:

[[1 2]

[3 4]]

[[-2. 1. ]

[ 1.5 -0.5]]

[[1.0000000e+00 0.0000000e+00]

[8.8817842e-16 1.0000000e+00]]

现在创建一个矩阵A的逆矩阵:

实例

importnumpyasnpa=np.array([[1,1,1],[0,2,5],[2,5,-1]])print('数组 a:')print(a)ainv=np.linalg.inv(a)print('a 的逆:')print(ainv)print('矩阵 b:')b=np.array([[6],[-4],[27]])print(b)print('计算:A^(-1)B:')x=np.linalg.solve(a,b)print(x)# 这就是线性方向 x = 5, y = 3, z = -2 的解

输出结果为:

数组 a:

[[ 1 1 1]

[ 0 2 5]

[ 2 5 -1]]

a 的逆:

[[ 1.28571429 -0.28571429 -0.14285714]

[-0.47619048 0.14285714 0.23809524]

[ 0.19047619 0.14285714 -0.0952381 ]]

矩阵 b:

[[ 6]

[-4]

[27]]

计算:A^(-1)B:

[[ 5.]

[ 3.]

[-2.]]

结果也可以使用以下函数获取:

x = np.dot(ainv,b)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值