
一、多元函数求最值问题
多元函数是高等数学中的重要概念之一,但随着新课程的改革,高中数学与大学数学知识的衔接,多元函数的值域与最值及其衍生问题在高考试题中频频出现。
同时,多元函数最值问题中蕴含着丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力。因此,怎样求多元函数的最值,是是高考考生们必须具备的解题技能。
二、常见的解题方法有哪些?
导数法、消元法、均值不等式法(“1”代换)、换元法(整体换元 三角换元)、数形结合法、柯西不等式法、向量法等
主要思想方法:数形结合、化归思想等。
三、题目案例分析

【评析】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数,再用单调性或基本不等式求解,二是直接用基本不等式,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过不等式的途径进行。

【评注】在求有些多元函数的最值时,恰当构造向量模型,利用向量数量积的性质,常可使复杂问题变得简单明了,使繁琐的解题显得巧妙自然。
当然,在这一道题目的求解过程中,需要注意的是运用了一个不等式,这个不等式可以直接运用,并很快求出答案。此不等式常用语分数不等式里面来去解题。

【评注】该解法利用条件将不等式放缩后,通过消元,转化为一元函数,再用基本不等式求解。

【评注】该解法充分体现了数学中的消元思想,将二元函数的最值转化为一元函数的最值,从而利用导数研究函数最值,但在处理过程中充分考虑变量的取值范围,否则容易出错。
在求解最值的时候,可以使用消元法。消元法就是通过简单的构造和化简,来构造一个只含有一个参数变量的函数式,这样一来,就能够求出新构造出来的函数最值。
本题就是令K=x/y,然后代入原式,得到了一个新函数。同时,需要注意K的取值范围,是(0,1)。
例2: 已知任意非零实数x,y满足3x^2+4xy≤λ(x^2+y^2)恒成立,则实数λ的最小值为____.

【评注】关注各项系数,直接利用基本不等式放缩,构思巧妙。



【评注】根据条件进行放缩,利用配方法解决问题。不过,这道题目里面,也含有一些消元法的思想,就是尽量把三个参数变成两个参数来求解。

【评注】根据条件进行放缩,关注到基本不等式,同时有整体配方思想。


【评注】直接利用基本不等式解决问题。

