一、概述
现有一个wenda1.xlsx文件,内容如下:
需要将faq记录合并为一行,效果如下:
注意:faq记录,每一行用||来拼接。
二、多行转换一行新建test1.py,内容如下:
# !/usr/bin/python3
# -*- coding: utf-8 -*-
import xlrd
# 打开excel文件,创建一个workbook对象
rbook = xlrd.open_workbook('wenda1.xlsx')
# sheets方法返回对象列表,[]
rbook.sheets()
# xls默认有3个工作簿,Sheet1,Sheet2,Sheet3
rsheet = rbook.sheet_by_index(0) # 取第一个工作簿
faq_tmp_dict = {} # FAQ临时字典
faq_formal_list = [] # FAQ正式列表
first_category_tag = "" # 一级分类标识
index = 0 # 索引
#循环工作簿的所有行
for row in rsheet.get_rows():
index +=1
first_category_row = row[0] # 1级分类所在的列
first_category_value = first_category_row.value # 1级分类的值
if first_category_value != '1级分类': # 排除第一行,这些都是列名
if first_category_value: # 当1级分类的值不为空时
# 更新一级分类标识,用#连接
first_category_tag = "%s#%s"%(first_category_value,index)
faq_like_column = row[1] # FAQ相似句所在的列
faq_like_value = faq_like_column.value # FAQ相似句的值
# 更新临时字典,不存在默认值为空字典,否则追加到列表中
faq_tmp_dict.setdefault(first_category_tag, []).append(faq_like_value)
else:
# 当1级分类的值为空时
faq_like_column = row[1] # FAQ相似句所在的列
faq_like_value = faq_like_column.value
faq_tmp_dict.setdefault(first_category_tag, []).append(faq_like_value)
print(faq_tmp_dict)
# 处理临时字典
for i in faq_tmp_dict:
tmp_dict = {}
# 一级分类,切割#号,取第一个
first_category = i.split('#')[0]
# print("first_category",first_category)
# faq所有记录,将faq列表转换为一行,用逗号拼接
faq_like_all = "||".join(faq_tmp_dict[i])
# print("faq_merge",faq_all)
tmp_dict['first_category'] = first_category
tmp_dict['faq_like_all'] = faq_like_all
faq_formal_list.append(tmp_dict)
print(faq_formal_list)
执行输出:
{'闲聊#2': ['不在吗?', '你好在吗?', '你在不在', '有人在么。', '你好?', '在么?说话啊', '客户在不在?'], '闲聊#9': ['你好', '客服你好', '你好,客服']}
[{'first_category': '闲聊', 'faq_like_all': '不在吗?||你好在吗?||你在不在||有人在么。||你好?||在么?说话啊||客户在不在?'}, {'first_category': '闲聊', 'faq_like_all': '你好||客服你好||你好,客服'}]
从上面输出内容,可以看出。将多行合并为一行,并且将faq记录写入到一个字典里面了。接下来就可以写入到新表格了。
三、写入新表格
完整代码如下:
# !/usr/bin/python3
# -*- coding: utf-8 -*-
import xlrd
# 打开excel文件,创建一个workbook对象
rbook = xlrd.open_workbook('wenda1.xlsx')
# sheets方法返回对象列表,[]
rbook.sheets()
# xls默认有3个工作簿,Sheet1,Sheet2,Sheet3
rsheet = rbook.sheet_by_index(0) # 取第一个工作簿
faq_tmp_dict = {} # FAQ临时字典
faq_formal_list = [] # FAQ正式列表
first_category_tag = "" # 一级分类标识
index = 0 # 索引
#循环工作簿的所有行
for row in rsheet.get_rows():
index +=1
first_category_row = row[0] # 1级分类所在的列
first_category_value = first_category_row.value # 1级分类的值
if first_category_value != '1级分类': # 排除第一行,这些都是列名
if first_category_value: # 当1级分类的值不为空时
# 更新一级分类标识,用#连接
first_category_tag = "%s#%s"%(first_category_value,index)
faq_like_column = row[1] # FAQ相似句所在的列
faq_like_value = faq_like_column.value # FAQ相似句的值
# 更新临时字典,不存在默认值为空字典,否则追加到列表中
faq_tmp_dict.setdefault(first_category_tag, []).append(faq_like_value)
else:
# 当1级分类的值为空时
faq_like_column = row[1] # FAQ相似句所在的列
faq_like_value = faq_like_column.value
faq_tmp_dict.setdefault(first_category_tag, []).append(faq_like_value)
print(faq_tmp_dict)
# 处理临时字典
for i in faq_tmp_dict:
tmp_dict = {}
# 一级分类,切割#号,取第一个
first_category = i.split('#')[0]
# print("first_category",first_category)
# faq所有记录,将faq列表转换为一行,用逗号拼接
faq_like_all = "||".join(faq_tmp_dict[i])
# print("faq_merge",faq_all)
tmp_dict['first_category'] = first_category
tmp_dict['faq_like_all'] = faq_like_all
faq_formal_list.append(tmp_dict)
print(faq_formal_list)
import xlwt
import json
f = xlwt.Workbook()
sheet1 = f.add_sheet('Sheet1', cell_overwrite_ok=True)
row0 = ["1级分类", "faq记录"]
# 写第一行
for i in range(0, len(row0)):
sheet1.write(0, i, row0[i])
# # 加载json文件
# with open("tj.json", 'r') as load_f:
# load_dict = json.load(load_f) # 反序列化文件
#
num = 0 # 计数器
max_length = 0 # 最大长度
for i in faq_formal_list:
num+=1 # 自增1
faq_col = sheet1.col(1) # faq记录所在的列
length = len(i['faq_like_all']) # 计算长度
# print("长度",length)
# 更新最大长度
if max_length < length:
max_length = length
# 设置表格宽度
faq_col.width = max_length * 20* 20
# 写入库名
sheet1.write(num, 0, i['first_category'])
# faq_like_str = "||".join(i['faq_like_all'])
sheet1.write(num, 1, i['faq_like_all'])
# 保存到表格
f.save('test1.xls')
执行代码,它会生成一个test1.xlsx。
打开文件,效果如下:
以上就是python excel多行合并的方法的详细内容,更多关于python excel多行合并的资料请关注我们其它相关文章!
本文标题: python excel多行合并的方法
本文地址: http://www.cppcns.com/jiaoben/python/368636.html