绝对值积分不等式_克劳修斯不等式的另一种直观证明(附带引入熵与熵增原理)...

6c4d706030e4283b9f0df08c493ee423.png

热力学部分的熵一般由克劳修斯不等式引入[1], 而克劳修斯不等式的证明通常会涉及到一个热机分别于 n 个热源接触完成循环过程的思考实验, 这本身也是一个很巧妙的实验但对初学/自学者来说理解起来或许会有些繁琐, 本文的目的即引入关于克劳修斯不等式的一个十分直观的证明方法.

[1]当然这之外还有其它方法(Caratheodory方法)引入, 详细参考王竹溪先生的《热力学》第二版P139.


克劳修斯不等式即

, 其描述的是一个热力学循环过程,当过程为可逆过程时取等号, 不可逆过程取小于号. 下面我们将证明这个不等式:

克劳修斯不等式前身是卡诺定理:

, 即热机的效率总是小于等于可逆热机的效率. 该热机是可逆热机时取等号,是不可逆热机时取小于号. 卡诺定理本身不难证明,其依赖于热力学第二定律.

将上述式子整理一下可以得到:

#注意这里
都表征吸热所以取消了负号.

卡诺循环是一个可逆循环其图像如下(左图):

4eaeb36f31814ba2b4e04862278efb86.png
A是卡诺循环,B也是卡诺循环(就是窄了点), 至于右图就是一个任意的准静态循环过程

对于卡诺循环自然是满足关系式

的.

下面研究一下俩挨在一起的窄条卡诺循环是什么效果:

dbb39cc553b2910e321eb3699c6da83e.png

如上图所示,俩循环之间有一个重叠的部分, 这部分正着反着都走了一次自然是效果被抵消掉了, 最后也就只剩下这个"外壳"是有效过程了. 所以上面左右两边是一个等价的过程.

此时

, 也就是说右边的过程满足关系

按照上面的理论, 我们是否能通过卡诺循环来构造任意可逆循环呢? 做法如下图所示:

c8e07e16df7fe612240086c0f6231e80.png
假如我们用n/2个卡诺循环,就会有高温低温一共n个热源

假设右图由 n/2 个卡诺循环构成, 那么它就满足关系

此时他还不能说就代替了左边的循环, 但是当你用了近乎无穷个卡诺循环来拼装之后, 最后形成的"外壳"图像就不会这么"扎手"了, 会光滑许多,此时也就能够与左边的循环等价了. 分得这么细自然就要把求和改为积分了, 也就是说:
, 这也就证明了克劳修斯等式.

小于号如何证明? 只需要假设最后构成外壳的部分在其相应的窄条卡诺循环里把这个过程改成图像很相近的不可逆过程即可, 这样每一个循环都会满足关系式

, 按照前面的逻辑推理下来就会有
.

结合上面两种情况就得到了克劳修斯不等式:

.

下面就是顺带一提的部分了:

任意可逆循环均存在关系

, 转一圈不变就说明了积分跟路径无关, 这样积分本身就可以用初末两点的某个函数值做差来表征, 这个函数就是态函数熵. 也就是说积分与路径无关就可以引入一个全微分/态函数.

态函数熵的改变量自然可以通过这个式子计算:

(务必注意这是
可逆过程才成立的).

至于熵增原理:

可以设想一个系统由状态 A 到状态 B 的不可逆热力学过程,

这个过程熵的改变为

,热温比积分为

现在再由状态 B 经过一段可逆的热力学过程回到状态 A,

这部分过程自然满足等式

-----------------------
[i]

现在将这个 A → B → A 视为一个不可逆的循环过程:

循环过程从 A 态到 A 态, 态函数熵自然不发生改变:

整个过程的热温比积分为:

小于零是因为总的来说是个不可逆过程.

那么自然有

再考虑到式子 [i] 不难得到

,

这也就是说不可逆过程的熵增是大于热温比积分的.

而可逆过程熵增等于热温比积分.

假如我们考虑一个绝热的系统,自然有

此时

即熵增原理, 也就是说绝热系统的熵永不减小.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值