本文是覃超老师的《算法训练营》的学习笔记,此笔记的内容包含了学习后的个人记录、个人总结、理解和思想。从而更好的学习算法。
前言
学习任何一门知识的时候,我们需要分析清楚这门知识的核心是什么,从而在这个核心中我们可以得到什么。如果我们是盲目的吸收知识,其实很多知识我们都是在目前场景、工作、生活中无法使用的。也是因为学习之后无法运用,所以我们很快就会遗忘,或者是在学习的过程中很容易就会放弃。
在一生的学习的过程中,发现学习我们急需使用或者能给我们及时带来价值的知识,我们会学的更加牢固,更加能坚持学习。
学习《数据结构与算法》这门知识的核心是什么?又能得到什么呢?
- 弄懂编程的底层逻辑;
- 在编程的过程中,拥有一个哆啦A梦一样百宝工具袋;
- 在遇到性能问题的时候,有算法的思维逻辑和规则来解决问题;
- 提高编程思维;
这篇笔记记录了算法的核心时间和空间复杂度
,《数据结构与算法》都是围绕着这个核心开展的。它的存在也是为了解决我们在编程的过程中性能问题,同时也让我们有更高级的思维和思路,写出更优质的程序。
复杂度指标 Big O Notation
- O (1): 常数复杂度 - Constant Complexity
- O (log n): 对数复杂度 - Logarithmic Complexity
- O (n): 线性复杂度 - Linear Complexity
- O (n^2): 平方复杂度 - N square Complexity
- O (2^n): 指数 - Exponential Growth
- O (n!): 阶乘 - Factorial
如何看时间复杂度
- 分析函数;
- 根据n的不同情况会运行多少次;
- 最后得出一个平均的运行次数的量级;
Complexity 例子
O (1) - 常数复杂度
let n = 1000;
console.log("Hello - your input is: " + n)