python123高次方程求根_5.5Python数据处理篇之Sympy系列(五)---解方程

目录

前言

(一)求解多元一次方程-solve()

1.说明:

解多元一次方程可以使用solve(),在sympy里,等式是用Eq()来表示,

例如:\(2x=4\) 表示为:Eq(x*2, 4)

2.源代码:

"""

解下列二元一次方程

2x-y=3

3x+y=7

"""

# 导入模块

from sympy import *

# 将变量符号化

x = Symbol('x')

y = Symbol('y')

z = Symbol('z')

# 解一元一次方程

expr1 = x*2-4

r1 = solve(expr1, x)

r1_eq = solve(Eq(x*2, 4), x)

print("r1:", r1)

print("r1_eq:", r1_eq)

# 解二元一次方程

expr2 = [2*x-y-3, 3*x+y-7]

r2 = solve(expr2, [x, y])

print("r1:", r2)

# 解三元一次方程

f1 = x+y+z-2

f2 = 2*x-y+z+1

f3 = x+2*y+2*z-3

r3 = solve([f1, f2, f3], [x, y, z])

print("r3:", r3)

3.输出:

(二)解线性方程组-linsolve()

1.说明:

在sympy中,解线性方程组有三种形式:

默认等式为0的形式:linsolve(eq, [x, y, z])

矩阵形式:linsolve(eq, [x, y, z])

增广矩阵形式:linsolve(A,b, x, y, z)

2.源代码:

"""

x+y+z-2=0

2x-y+z+1=0

x+2y+2z-3=0

"""

from sympy import *

x, y, z = symbols("x y z")

# 默认等式为0的形式

print("======默认等式为0的形式 =======")

eq = [x+y+z-2, 2*x-y+z+1, x+2*y+2*z-3]

result = linsolve(eq, [x, y, z])

print(result)

print(latex(result))

# 矩阵形式

print("======矩阵形式 =======")

eq = Matrix(([1, 1, 1, 2], [2, -1, 1, -1], [1, 2, 2, 3]))

result = linsolve(eq, [x, y, z])

print(result)

print(latex(result))

# 增广矩阵形式

print("======增广矩阵形式 =======")

A = Matrix([[1, 1, 1], [2, -1, 1], [1, 2, 2]])

b = Matrix([[2], [-1], [3]])

system = A, b

result = linsolve(system, x, y, z)

print(result)

print(latex(result))

3.输出:

(三)解非线性方程组-nonlinsolve()

1.说明:

nonlinsolve()用于求解非线性方程组,例如二次方,三角函数,,,等方程

2.源代码:

"""

x**2+y**2-2=0

x**3+y**3=0

"""

import sympy as sy

x, y = sy.symbols("x y")

eq = [x**2+y**3-2, x**3+y**3]

result = sy.nonlinsolve(eq, [x, y])

print(result)

print(sy.latex(result))

3.输出:

\[

\left\{\left ( -1, \quad 1\right ),\\ \left ( -1, \quad - \frac{1}{2} - \frac{\sqrt{3} i}{2}\right ),\\ \left ( -1, \quad - \frac{1}{2} + \frac{\sqrt{3} i}{2}\right ),\\ \left ( 1 - i, \quad -1 + i\right ),\\ \left ( 1 + i, \quad -1 - i\right ),\\ \left ( 1 - \frac{i \sqrt{- 6 \sqrt{3} + 12}}{2} - \frac{i \sqrt{- 2 \sqrt{3} + 4}}{2}, \quad \frac{1}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{2} \sqrt{-2 + \sqrt{3}}}{2}\right ),\\ \left ( 1 - \frac{\sqrt{-12 - 6 \sqrt{3}}}{2} + \frac{\sqrt{-4 - 2 \sqrt{3}}}{2}, \quad - \frac{\sqrt{3}}{2} + \frac{1}{2} - \frac{\sqrt{-8 + \left(- \sqrt{3} + 1\right)^{2}}}{2}\right ),\\ \left ( 1 - \frac{\sqrt{-4 - 2 \sqrt{3}}}{2} + \frac{\sqrt{-12 - 6 \sqrt{3}}}{2}, \quad - \frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\sqrt{-8 + \left(- \sqrt{3} + 1\right)^{2}}}{2}\right ),\\ \left ( 1 + \frac{\sqrt{-4 + 2 \sqrt{3}}}{2} + \frac{\sqrt{-12 + 6 \sqrt{3}}}{2}, \quad \frac{1}{2} + \frac{\sqrt{3}}{2} - \frac{\sqrt{2} \sqrt{-2 + \sqrt{3}}}{2}\right )\right\}

\]

(四)求解微分方程-dsolve()

1.说明:

求解微分方程使用dsolve(),注意:

f = symbols(‘f‘, cls=Function)的作用是声明f()是一个函数。

2.源代码:

from sympy import *

# 初始化

x = symbols('x')

f = symbols('f', cls=Function)

# 表达式

expr1 = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))

# 求解微分方程

r1 = dsolve(expr1, f(x))

print(r1)

print("原式:", latex(expr1))

print("求解后:", latex(r1))

3.输出:

原式:

\[

f{\left (x \right )} - 2 \frac{d}{d x} f{\left (x \right )} + \frac{d^{2}}{d x^{2}} f{\left (x \right )} = \sin{\left (x \right )}

\]

解微分后:

\[

f{\left (x \right )} = \left(C_{1} + C_{2} x\right) e^{x} + \frac{\cos{\left (x \right )}}{2}

\]

作者:Mark

日期:2019/03/17 周日

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值