【想要了解更多精彩文章、视频,欢迎关注创鹏科学堂】
人生最大的意义,莫过于过得更方便;数学最大的意义,莫过于帮助人类过得更方便。几千年来,自从数学出现之后,它就一直以人类生活为导向,以宇宙探索为真理,培养人们更敏捷的思维,更快速的做事方法。它无声无息,虽然抽象,但抽象之余更有实用。就像医生的药方,即使我们看不懂,但口入至身心,药到内病除。
凡是事物都会有抽象的概念,有时候我们并不容易看到,那是因为我们只是在事物的表面下工夫,却没有深入研究事物的真理,如果将一种事物放置于一个参照物之中,我们就会从参照物中看到事物的发展变化。将两种事物放置于同一参照物中,我们就能比较两者之间的变化。
坐标系的本质
放在数学里,为了将两组数据加以比较,那么恰巧这两组数据无穷大或者无穷小,为了更加方便,我们会将两组数的不同点放在不同的参照物里,在数学中,坐标系便是参照物。
坐标系指的是什么呢,如果研究对象是两个实数的话,那么坐标系表示的就是一条数轴;研究对象为代数式或者方程的话,那么坐标系表示的是一个平面,因为代数式和方程的意义在于赋值,赋予某一个值,就可以得到平面中的一个点;研究对象为三维曲线或者几何图形,那么坐标系就是三条不同维度的轴。
在三维立体几何中,为了清晰的算出某个几何体的方程,就要根据它的长宽高三个方向建立数学模型,其中水平面的长轴就是X轴;垂直于水平面的高轴就是Y轴,与X轴平行的轴便是Z轴,三者共同组成了空间坐标系。
物理学中,坐标系的本质就是研究质点的运动,其速度的快慢与方向的不同依赖于不同坐标系模型的建立。其中使用最多的坐标系叫做正交坐标系。
坐标系的几何来源
最早的坐标系是从蜘蛛结网问题开始的,当时有一位伟大的哲学家笛卡尔思考过这样的问题:有时候我们看到的空间几何体是直观的,它存在于我们的生活中,但每个代数式的结果和呈现却是抽象的,有没有这么一种方法将几何体和代数式结合起来进行研究呢。
于是他看到了蜘蛛在结网,在狂风的打击下,蜘蛛不得不补全残漏的网用以捕捉小昆虫。蜘蛛从不同的方向和角度来回运动,这给了这位哲学家当头一棒:为什么不能将蜘蛛看成一个点,而将网看成一个面呢。但是没有实际的研究,他很快又放弃了自己的想法。但是当他看到自家屋里的两面墙和地面正好组成了三条线,再参考刚才织网的蜘蛛,他恍然大悟,在三条线组成的几何体中设一个点(x,y),y的值根据x的变化而变化,这就是坐标系了。
坐标系的空间几何意义
坐标系最大的意义在于创建了从几何上研究抽象的代数的方式,将直观的几何体和抽象的数学代数式结合起来,这样不仅让代数式研究更加方便,而且也减少了部分数据的计算量,无论怎么看,坐标系对于数学的意义都是很大的。
在矩形或者圆中,假设有一点P,在矩形和圆的中心位置,那么在圆中,P到圆上的没一点距离都是相等的,那么P点就是圆的基本元素;矩形中,P点在矩形角平分线的任意位置到矩形的距离都随远近而变化,那么P也是组成矩形的基本元素;只要将点和图形联系在一起,在坐标系中,也可以将几何体和代数式进行联系,从整体进行研究。
坐标系的生活意义
曾经恩格斯评价坐标系:"坐标系中出现了变数,变数的发明真正让辩证法的学问进入到数学里面。"我们在与长辈对弈的时候,棋子的位置不断变化;在公寓里面房间的设置,不同房间便是不同的点;坐车回家的时候,车位的设置,使我们处在不同的空间位置。这一切,都是坐标系在发挥应有的作用。
在地区的设置中,不同城市的坐标系都会在一个椭圆形来回转换,不同的地方有不同的椭圆基准,参照布尔莎模型,为了确定城市的相对位置,就要测绘出X,Y,Z的变化,当X,Y,Z不脱离范围之外,城市之间的位置和距离就不会发生变化。
作者的想法
坐标系最大的意义不在于告诉我们数学的伟大,而是教给我们解决问题的正确方式,就像人类史上的方向盘一样,在任何位置都不要迷失方向,数学会一直将人类带到正确的位置。
【想要了解更多精彩文章、视频,欢迎关注创鹏科学堂】