# det曲线_平面曲线的曲率的复数表示

$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$

$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$

$$\dot{\boldsymbol{t}}=\kappa \boldsymbol{n}$$

$$\dot{\boldsymbol{t}}\cdot\boldsymbol{n}+\boldsymbol{t}\cdot\dot{\boldsymbol{n}}=0$$

$$\dot{\boldsymbol{n}}=-\kappa \boldsymbol{t}$$

$\kappa$被称为曲线在该点的曲率。

$$\ddot{z}(s)=i\kappa (s) \dot{z}(s)$$

$$z(s)=\int e^{i\int \kappa (s)ds}ds$$

$$\dot{z}=e^{i\phi}$$

$$\ddot{z}=e^{i\phi}\left(i\dot{\phi}\right)$$

$$\kappa=\dot{\phi}$$

$$\frac{d\phi}{ds}=\frac{\frac{y''(t)}{x'(t)}-\frac{y'(t)x''(t)}{[x'(t)]^2}}{1+\left(\frac{y'(t)}{x'(t)}\right)^2}\div \left(\frac{ds}{dt}\right)$$

$$\kappa=\frac{y''(t) x'(t)-x''(t) y'(t)}{[x'(t)^2+y'(t)^2]^{3/2}}$$

$$dz=\left(\frac{d f}{d \theta}+i f\right)e^{i\theta}d\theta$$

$$ds=\sqrt{f^2+\left(\frac{d f}{d \theta}\right)^2}d\theta$$

$$\frac{d\phi}{ds}=\left[\frac{1-\left(\frac{d^2 f}{d \theta^2}\right) f/\left(\frac{d f}{d \theta}\right)^2}{1+f^2/\left(\frac{d f}{d \theta}\right)^2}+1\right]\div \left(\frac{d s}{d \theta}\right)$$

$$\kappa=\frac{2\left(\frac{d f}{d \theta}\right)^2+f^2-\left(\frac{d^2 f}{d \theta^2}\right)f}{\left[\left(\frac{d f}{d \theta}\right)^2+f^2\right]^{3/2}}$$

10-24 5465

12-27 1360
11-08 3万+
05-31 1548
10-14 2616
05-07 3230
12-13 1726
06-14 3000
04-17 1万+
03-08 4017
03-27 3583
03-11 3871
06-16 3465