在这篇10分钟的文章中,您将学习Python中的函数式范型。您还将学习列表推导式。
目录
- 函数式范式
- Python的map函数是如何运行的
- Python中的lambda表达式
- Python中的reduce函数
- filter函数
- Python中的高阶函数
- 带有函数的部分应用
- 函数编程不是Python化
- 列表推导式
- 任何可迭代对象的推导式
- 结论
函数式范式
在命令式编程范式中,我们通过给计算机一个任务序列来执行任务,然后计算机会执行这些任务。在执行它们时,计算机可以改变状态。例如,我们设A = 5,然后改变A的值。因为我们的A是变量,所以它内部的值是变化的。
在函数式编程范式中,我们不告诉计算机去做什么,而是告诉它是什么东西。一个数的最大公约数是什么,等等。
变量不会变化。一旦我们设置了一个变量,它就会永远保持这种状态。因此,函数在函数式范型中没有副作用。副作用就是函数改变了它外部的东西。让我们来看一个例子:
输出是5。在函数式范型中,改变变量是一个很大的禁忌,而让函数影响它们范围之外的东西也是一个大大的禁忌。函数唯一能做的就是计算某些东西并返回它。
现在您可能会想“没有变量,就没有副作用?为什么这很好?”问得好,读这篇文章的古怪陌生人。
如果一个函数使用相同的参数被调用两次,那么它肯定会返回相同的结果。如果您学过数学函数,您就会喜欢这一点。我们称之为函数的引用透明性。由于函数没有副作用,如果我们构建一个计算程序,我们就可以加快该程序的速度。如果程序知道func(2)等于3,我们可以将其存储在一个表中。这将防止程序在我们已经知道答案的情况下去运行相同的函数。
通常,在函数式编程中,我们不使用循环,我们使用递归。递归是一个数学概念,它意味着“自食其力”。对于递归函数,该函数将自己作为一个子函数进行调用。下面是Python中递归函数的一个很好的例子:
一些编程语言也很懒。这意味着他们直到最后一秒才开始计算或做任何事情。如果我们编写一些代码来执行2 + 2,一个函数式程序只会在我们需要使用结果时才会计算这个结果。我们很快就会探讨Python中的惰性。
Python的map函数是如何运行的
为了理解映射,让我们首先看看什么是可迭代对象。一个可迭代对象是我们可以迭代的任何东西。这些是列表或数组,但是Python有许多不同的可迭代对象。我们甚至可以通过实现魔术方法来创建我们自己的可迭代对象。一个魔术方法就像一个API,它可以帮助我们的对象变得更Python化。要使一个对象成为一个可迭代对象,我们需要实现2个魔术方法:
第一个魔术方法是__iter__,或者叫特殊iter(双下划线)方法,它会返回迭代对象,我们通常在循环开始时使用它。特殊next方法,__next__,会返回下一个对象是什么。
让我们来看看这个: