mysql集群 阿里云_阿里云知识科普(4)如何搭建阿里云集群服务器?

原标题:阿里云知识科普(4)如何搭建阿里云集群服务器?

5315320884443b03b3e228eb2644e2c1.png

搭建集群服务器,今天就给大家介绍一下阿里云搭建集群服务器的方法。

准备工作:

1、需要有2台以上的阿里云服务器:https://www.aliyun.com/product/ecs

2、开通阿里云容器服务:https://www.aliyun.com/product/containerservice

阿里云提供了非常简便的搭建集群服务器——容器服务

最重要的是,阿里云的容器服务是免费的,只需要支付您所使用资源(云服务器, 负载均衡等)的费用。

所以说,如果你要用哪一个厂商的产品最好是他们家的全家桶,方便管理。

b966b5b569034815eb4d75acb4c00d78.png

阿里云创建集群有2种方法。

方法一:

创建一个集群,并同时创建若干个云服务器。

您可以通过容器服务直接创建一个包含若干个新云服务器的集群。

详细参考阿里云官方文档《如何创建阿里云集群》。

通过此方式创建的云服务器皆为按量付费,如需要包年包月的云服务器,可以单独购买再通过接下来的 方法二 操作。

方法二:

创建一个零节点的集群并添加已有的云服务器。

1、创建一个零节点的集群。

如果您已经在云服务器 ECS 上购买了若干个云服务器,可以在容器服务上创建一个零节点的集群。

操作方式同 方法一,您只需要选择 添加已有节点。

2、添加已有的云服务器。

您可以通过以下两种方法将已有云服务器添加到容器服务中。

重置云服务器的镜像,将其自动加入集群。

此种方式会重置云服务器的镜像和系统盘,需要谨慎。但是这种方式加入的服务器比较干净。

在云服务器上执行脚本,将云服务器手动加入集群。

此种方式适合于不希望重置云服务器的镜像。

详细参考官方文档《如何将已有的云服务器添加到容器服务里》。

0092cff88d73378fb0c76c01ec35b948.png

集群管理

支持集群扩容、删除、清理、连接等操作。更多详细的内容,请参考官方文档:

搜索集群

扩容集群

下载集群证书

清理集群磁盘

删除集群

mysql数据库如何分表

当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,很有可能会死在那儿了。

所以,分表的目的就在于此,减小数据库的负担,缩短查询时间。

一、先说不麻烦的。

还是那句话,没有钱解决不了的事,如果有,那一定是钱不够。

阿里云数据库RDS就不用自己分表,只要购买 HybridDB for MySQL数据库 即可。

b4ac8e18c1224b2f6f141a73342af7c5.png

参考官方解答:

您无需自己做分表,分布式云数据库HybridDB for MySQL高度兼容MySQL协议,若您有分布式需求,只要购买HybridDB for MySQL数据库即可,详情请参见 云数据库HybridDB for MySQL 产品介绍。

而腾讯云的是这么解答的

云数据库会帮我做分库分表吗?

因为分库分表的标准和业务逻辑相关,所以云数据库不会帮业务做分库分表。

所以,还是建议使用阿里云的数据库产品。能用钱解决的问题尽量别耽误时间。如果你非要节省这些费用或者是数据库产品不支持分表,请接着往下看。

二、再说麻烦的

麻烦的肯定需要自己手动操作,还要承担一定的风险。

我们先来跟着教程来操作一遍。

1、创建一个完整表存储着所有的成员信息

create table member(

id bigint auto_increment primary key,

name varchar(20),

sex tinyint not null default '0'

)engine=myisam default charset=utf8 auto_increment=1;

加入点数据:

insert into member(id,name,sex) values (1,'jacson','0');

insert into member(name,sex) select name,sex from member;

第二条语句多执行几次就有了很多数据。

2、下面我们进行分表:

这里我们分两个表tb_member1,tb_member2

DROP table IF EXISTS tb_member1;

create table tb_member1(

id bigint primary key auto_increment ,

name varchar(20),

sex tinyint not null default '0'

)ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

DROP table IF EXISTS tb_member2;

create table tb_member2(

id bigint primary key auto_increment ,

name varchar(20),

sex tinyint not null default '0'

)ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 ;

//创建tb_member2也可以用下面的语句 create table tb_member2 like tb_member1;

3、创建主表tb_member

DROP table IF EXISTS tb_member;

create table tb_member(

id bigint primary key auto_increment ,

name varchar(20),

sex tinyint not null default '0'

)ENGINE=MERGE UNION=(tb_member1,tb_member2) INSERT_METHOD=LAST CHARSET=utf8 AUTO_INCREMENT=1 ;

查看一下tb_member表的结构:desc tb_member;

50569a89a9279bfc6d6c355712c37949.png

4、接下来,我们把数据分到两个分表中去:

insert into tb_member1(id,name,sex) select id,name,sex from member where id%2=0;

insert into tb_member2(id,name,sex) select id,name,sex from member where id%2=1;

查看一下主表的数据:select * from tb_member;

55ae0368cb8d0f6b78734720cfb41d86.png

注意:总表只是一个外壳,存取数据发生在一个一个的分表里面。

ps:创建主表时可能会出现下面的错误:

`ERROR 1168 (HY000): Unable to open underlying table which is differently defined

or of non-MyISAM type or doesn't exist`

若遇到上面这种错误,一般从两方面来排查:(从这两方面一般可以解决这个问题,本人也遇到了。)

查看上面的分表数据库引擎是不是MyISAM.

查看分表与指标的字段定义是否一致。

分表的大概过程和步骤就是这样的,下面我们来看看分表的算法实现:

假设现在有一个应用系统可能会有100亿的用户量,另外一个表一般存储量在不超过100万的时候基本能保持良好性能,计算下来,我们需要1万张表,即分表为1万个表。

我们可以设计成:user_0~user_9999

在用户表里面我们有唯一的标示是用户id,我们尅设计一个小算法来实现用户id与访问表名的对应:

function getTable($id)

{

return 'user_'.sprintf('%d',($id >>20));

}

解释一下:

($id >> 20)表示将向右移位20位,(向右移动一位标示减少一半),printf('%d',$data)标示将数据按照十进制输出。

即id为1~1048575(2的20次幂-1)时均访问user_0,1048576~2097152时访问user_1,以此类推.....

那么问题来了,如果用户更多怎么办,现在需要一个可扩展的方法:

function getTable($id,$bit,$seed){

return 'user_'.sprintf('%0{$bit}d',($id >> $seed));

}

其中:$id为用户id,$bit标示表后缀的位数,$seed表示要移位的位数即:单个表能存储的记录条数。

这样就可以任意分表了。

总结:

其实上面我们介绍的是水平分表的实施方法,还存在另一种方法叫做:垂直分表

垂直分表:

举例说明,在一个博客系统中,文章标题,作者,分类,创建时间等,是变化频率慢,查询次数多,而且最好有很好的实时性的数据,我们把它叫做冷数据。

而博客的浏览量,回复数等,类似的统计信息,或者别的变化频率比较高的数据,我们把它叫做活跃数据。

我们进行纵向分表后:

存储引擎的使用不同,冷数据使用MyIsam 可以有更好的查询数据。活跃数据,可以使用Innodb ,可以有更好的更新速度。

对冷数据进行更多的从库配置,因为更多的操作是查询,这样来加快查询速度。对热数据,可以相对有更多的主库的横向分表处理。

对于一些特殊的活跃数据,也可以考虑使用memcache ,redis之类的缓存,等累计到一定量再去更新数据库.

责任编辑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值