奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)做了一个调查,投票选出32个最重要的算法:
1.A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一
种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定
次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。
2.集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启
发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最
前面的m个最符合条件的节点,m是固定数字——集束的宽度。
3.二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半
不符合要求的数据。
4.分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决
方案的算法,特别是针对离散、组合的最优化。
5.Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几
里得算法和线性系统中高斯消元法的泛化。
6.数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对
信息编码的过程,又叫来源编码。
7.Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况
下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一
起,加密后续通讯。
8.Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
9.离散微分算法(Discrete differentiation)
10.动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构
算法
11.欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的
算法之一,出现在公元前300前欧几里得的《几何原本》。
12.期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在
统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一
步上求得的最大可能值来计算参数的值。
13.快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DF
T)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。
14.梯度下降(Gradient descent)——一种数学上的最优化算法。
15.哈希算法(Hashing)
16.堆排序(Heaps)
17.Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统
和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。
18.LLL算法(Lenstra-Lenstra-Lovasz lattice reduction)——以格规约(lattice)基数
为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:
背包加密系统(knapsack)、有特定设置的RSA加密等等。
1905

被折叠的 条评论
为什么被折叠?



