matlab等距节点求插值多项式,数学实验“等距节点插值-Hermite插值-分段插值(线性-二次-三次)”实验报告(内含matlab程序)...

《数学实验“等距节点插值-Hermite插值-分段插值(线性-二次-三次)”实验报告(内含matlab程序)》由会员分享,可在线阅读,更多相关《数学实验“等距节点插值-Hermite插值-分段插值(线性-二次-三次)”实验报告(内含matlab程序)(6页珍藏版)》请在人人文库网上搜索。

1、西京学院数学软件实验任务书课程名称数学软件实验班级数0901学号姓名李亚强实验课题等距节点插值,Hermite插值,分段插值(线性,二次,三次)实验目的熟悉等距节点插值,Hermite插值,分段插值(线性,二次,三次)实验要求运用Matlab/C/C+/Java/Maple/Mathematica等其中一种语言完成实验内容等距节点插值,Hermite插值,分段插值(线性,二次,三次)成绩教师实验十六实验报告1、 实验名称:等距节点插值,Hermite插值,分段插值(线性,二次,三次)。2、 实验目的:进一步熟悉等距节点插值,Hermite插值,分段插值(线性,二次,三次)。3、 实验要求:运用。

2、Matlab/C/C+/Java/Maple/Mathematica等其中一种语言完成程序设计。4、 实验原理:1 等距节点插值:差分分为前向差分、后向差分和中心差分三种,它们的记法及定义如下所示:阶前向差分公式阶后向差分公式阶中心差分公式其中: -前向差分; -后向差分; -中心差分。假设,为了方便计算,构造差分表()。这里只说明前向牛顿插值,其多项式可表示为如下形式:其中为步长,且的取值范围为。2 埃尔米特插值:埃尔米特插值法满足在节点上等于给定函数值,而且在节点上的导数值也等于给定的导数值,对于有高阶导数的情况,埃尔米特插值多项式比较复杂,在实际应用中,常常遇到的是函数值与一阶导数值给定。

3、的情况,在这种情况下,个节点的埃尔米特插值多项式的表达形式如下所示:其中3 分段插值:给定插值节点、节点函数值及对应的导数值,则满足下面条件的分段埃尔米特插值函数的表达式如下所示:5、 实验内容:%等距节点插值function f,f0= dengjujiedian(x,y,x0)syms t;if(length(x) = length(y)n = length(x);c(1:n) = 0.0;elsedisp(x和y的维数不相等!);return;endf = y(1);y1 = 0;xx =linspace(x(1),x(n),(x(2)-x(1);if(xx = x)disp(节点之间不。

4、是等距的!);return;endfor(i=1:n-1)for(j=1:n-i)y1(j) = y(j+1)-y(j);endc(i) = y1(1); l = t;for(k=1:i-1)l = l*(t-k);end; f = f + c(i)*l/factorial(i);simplify(f);y = y1; endf0=subs(f,t,(x0-x(1)/(x(2)-x(1);%埃尔米特插值function f,f0= Hermite(x,y,y_1,x0)syms t;f = 0.0;if(length(x) = length(y)if(length(y) = length(y_。

5、1)n = length(x);elsedisp(y和y的导数的维数不相等!);return;endelsedisp(x和y的维数不相等!);return;endfor i=1:nh = 1.0;a = 0.0;for j=1:nif( j = i)h = h*(t-x(j)2/(x(i)-x(j)2);a = a + 1/(x(i)-x(j);endend f = f + h*(x(i)-t)*(2*a*y(i)-y_1(i)+y(i);endf0=subs(f,t,x0);%分段差值function f,f0 = fenduan(x,y,y_1,x0)syms t;f = 0.0;f0 =。

6、 0.0;if(length(x) = length(y)if(length(y) = length(y_1)n = length(x);elsedisp(y和y的导数的维数不相等!);return;endelsedisp(x和y的维数不相等!);return;end for i=1:nif(x(i)=x0)index = i;break;endend h = x(index+1) - x(index); fl = y(index)*(1+2*(t-x(index)/h)*(t-x(index+1)2/h/h + .y(index+1)*(1-2*(t-x(index+1)/h)*(t-x(index)2/h/h;fr = y_1(index)*(t-x(index)*(t-x(index+1)2/h/h + .y_1(index+1)*(t-x(index+1)*(t-x(index)2/h/h; f = fl + fr; f0 = subs(f,t,x0);。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值