苹果手机速度慢_苹果MagSafe 磁吸充电器的用户请注意这几个潜在问题

苹果iPhone12搭载的MagSafe充电技术虽能实现精准快速充电,但也存在一些问题,如使用时硅胶保护套易留环状印记,带有磁性的物品如信用卡可能会被消磁,且在手机过热情况下充电功率会受限。相比Lightning转USB-C及20W充电器,MagSafe充电速度较慢。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

iPhone12具有和Apple Watch 6一样的MagSafe充电功能,MagSafe充电器的磁环可让iPhone12与MagSafe配件精准结合,增加电流传输的稳定度。然而使用者发现,使用MagSafe充电时,硅胶保护套会因为与配件接触而留下环状印记。

根据MacRumors报导,苹果在最新的iPhone支持文件中描述了MagSafe充电器的相关信息,并提醒用户使用上可能产生的问题,其中影响比较大的问题是带有磁条或RFID芯片的信用卡、磁扣、护照或房卡等,如果放置在iPhone 12与MagSafe充电器之间,有可能会被消磁或损坏。

9d518dc8757854a7b32fb5e79af7476a.png

苹果MagSafe 磁吸快充

41b8a4d6933ebe6863fb1341be9d53b9.png

另一个问题则是手机过热可能会限制充电功率。MagSafe的充电功率最高可达15W,比Qi无线充电标准的7.5W高出一倍,但是当手机温度过高时,软件会将充电功率限制在80%。这点对于想要快速充饱电的用户,影响就比较大了。

喜欢皮套的果粉也要注意,MagSafe充电器会在皮套上留下环状印记。如果不用保护套直接进行无线充电,不确定长期下来是否会损坏iPhone的玻璃后盖。苹果先前已表示更换后玻璃非常昂贵。

苹果也在文件中说明,当iPhone同时连接MagSafe充电器和Lightning充电线时,手机只会透过Lightning进行充电。

清洁MagSafe充电器之前需先切断电源,然后清除金属环上的所有碎屑。苹果指出应使用柔软、略微沾湿的无尘布擦拭充电区域中央的硅胶,并表示不可使用门窗清洁剂、家用清洁剂、喷雾剂、溶剂或含有双氧水的清洁剂。

此外,据MacRumors报导,经过2次测试MagSafe充电后发现,速度表现并不理想。

以iPhone Xs Max为例,先放电至1%再转换至飞行模式后接着以MagSafe充电半小时,结果在第一次测试中,经过30分钟只充电至13%,第二次测试则为14%,相较许多7.5W的Qi无线充电器速度慢得许多。

因为以7.5W充电器为例,半小时可将iPhone充至25%。在相同条件下,一颗Belkin标准7.5W充电器则可将iPhone Xs Max充电至26%。

e80999747f8bce48091cd9b443ce3ea9.png

评论指出,MagSafe充电器确实适合使用在iPhone 12上,而且充电速度会比Qi充电器快,但不如以Lightning转USB-C及20W充电器一样快,因为后者可透过快充,让iPhone 12在半小时内便可充电至5成。

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值