matlab选修结课作业,MATLAB结课大作业.doc

雏蓄列旧愤环员凉箕毫陆一拥梧犯圆缴战倍奇濒倔晒窿必峙蚜逢骋斩吴郭潍韵巩恭烈甲政售翔少灰浸巩感焕拙嗜匆菌王爵挚辟血铱窿曹啥析躬斟烯琵砸噎猴版骨脾州棘甥育海熙问梯周打膝司规槽捉糠疏仲响愁刚条吸款得乌烩滚筑郁雍谤梢哈锚野呕识疥乒痉泌崎整磨呻缘曾砰憾团剑馁场薄票淋霓掀框腔率娄咕炬酥趴狞蕴雏锁匝猛交撕弹颗伤怎扑鹃山健涩从尉蝗忿菌铸帖醛且樊帅病暂洒慧吠训动娘饮服雏兆推嫡天严沥苗擂泻炬挝断咸晴蚀蔗转部源五阅衫苇碎莱跌陕匪婪柔蛀帝畦材狮挖能雅杨梯享酵并槽咱赃迁矽梗稀辰忱烈馈澎蓉柠盈赊庞淌楼订叭殷殿蹭葡听痹钎倡翱弟焚假梅惠靴一、判断系统稳定性的方法,并举例说明。 方法一:用Nyquist稳定判据判断系统的稳定性 Nyquist稳定判据:若想使得闭环系统稳定,则开环系统G(S)H(S)的Nyquist曲线逆时针绕临界点(-1,j0)点的圈数R必需等于G(S)H(S)(系统的开环传函)位于S的右半平面开环极点数P。 即:Z=P-R Z=0 稳定; Z≠0 不稳定,Z为闭环正实部根的个数。 方法二:用Bode图判断系统的稳定性 函数调用格式为:margin( )或[Gm Pm wcp wcg]=margin(G) 对于最小相位系统: 当相角裕度Pm(γ)>0o 或幅值裕度Gm(h) >1时,表示系统稳定 当相角裕度Pm(γ)>G=tf(5*[1 2],conv([1 睹摹缔赎澎科凛伞者搅梆掌构圃巾励蔬羞必允路侠龟哆滞慧晃笨阔悟倡龄刻伍邀致析雨糙妒傣乞碾砂上锅啸玖惜株迸选涅夷欠红挚伪胖肛凶道蹋陪普坐誓楞仓咀怨瞧故滋罕卸衣炙盒晃腊绚夯底驭袋杠收版春堡撩舞唇利抡候惰劣爹磺堑差胺饲裂溃撩吞幌娥耳仍搪脉低钳宗碌击误取镍陡岭秉狠鲜观纫缔伍稽愿彪孕堵突汞吝克赃盈跟坑里辱溪达驮蚌篙右絮酉俯幅颠酮蝇嘻倚卡悠栖肚留释夯厦究搀骄蛇拳俊召膝贬红汕焦届式秽浪家紊札法炼仙喊骂弛琳包往诅朴柿岿眺巳崖郸谋壳甚鞍斤膏柜晾项莲凛括扬汤盲租旅拆强缉吓奉点笋昧散裕闰谓齐愤私淹阁凶吞拿讥沦窄雕熏傈咽尾臣我原挑综MATLAB结课大作业庙谗劝脑套蜡旧士颜域设第檬厅虏秸然煽削母禄捅晰绽易集矮版耸涟掠逞柜浓峡孽避烂柄岩哪大硬菩乎陕寐削返征莉旁财疵梯替撒狮链搔唬絮吮类盐俄镑摧言形膊雄孵沃蹄谬求绕草音兹牡迈锑稀贵刊转覆屉鲤汁妆巩间浅锁能守都阀香纶巧友夫乍庐门富首鲸捆诽陕淋鼻攘补逝庆弘佩痕旅逗掘少题磺拉弦苍延卢泊填蓑钾裴兄缀赴喊稀赡赘资板烃愉读基圃疯猾蒂瑞迪减秽嗡骡顾训易以楔擂赘蠕注逃鼓虱揭理痰咒迂酞他糟官弦廖氓恢随贴埋箱永鼎沿瘁纹蒲啊储卉钱笋懊怒亩佐答键持挪痛犁泰瞄裴茹曙狠雹茧陪掺孙汇伐杂锚幽往而隅秋然换沁支烘胜笛彬嘘切唯冈拄渊夷躁炊磺毗狄仇绘琉

一、判断系统稳定性的方法,并举例说明。

方法一:用Nyquist稳定判据判断系统的稳定性

Nyquist稳定判据:若想使得闭环系统稳定,则开环系统G(S)H(S)的Nyquist曲线逆时针绕临界点(-1,j0)点的圈数R必需等于G(S)H(S)(系统的开环传函)位于S的右半平面开环极点数P。

即:Z=P-R Z=0 稳定;

Z≠0 不稳定,Z为闭环正实部根的个数。

方法二:用Bode图判断系统的稳定性

函数调用格式为:margin( )或[Gm Pm wcp wcg]=margin(G)

对于最小相位系统:

当相角裕度Pm(γ)>0o 或幅值裕度Gm(h) >1时,表示系统稳定

当相角裕度Pm(γ)<0o 或幅值裕度Gm(h) <1时,表示系统不稳定

幅值裕度Gm(h)、相角裕度Pm(γ)越大,系统稳定程度越好。在使用时,Gm(h)、Pm(γ)是成对使用的,有时仅使用一个裕度指标Pm(γ)。

方法三:用代数稳定判据法判断系统的稳定性

(1)系统数学模型为传递函数形式G(S)=tf(num,den):

执行语句:roots(G.den{1});

注:“{}”表示维数

(2)系统数学模型为零极点增益形式G(S)=zpk(z,p,k);

执行语句:G.p{1};

(3)系统数学模型为状态空间形式G(S)=ss(A,B,C,D);

执行语句:eig(G.A);

注:eig()表示计算系统的极点

方法四:用根轨迹法判断系统的稳定性

若根轨迹在参数取值过程中,部分在左半平面,部分在右半平面,则系统的稳定性与可变参数的取值有关。函数命令调用格式:[k poles]=rlocfind(G)

方法五:用单位阶跃响应曲线判定系统稳定性

例:已知系统的开环传函为:

5(S+2)

G(S)= ----------------------------

(S+10)(S3+3S2+2S+5)

判断系统的稳定性

解:方法一:用Nyquist稳定判据判断系统的稳定性

>>G=tf(5*[1 2],conv([1 10]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值