dos 网卡mac刷写工具_硬写 Inte I219网卡MAC地址-制作DOS启动盘教程

网上看看到有不少网友刷BIOS导致自己电脑MAC地址变成88-88-88-88-88-88有的看教程总是写不成功,亲试总结一下经验教程。

1、首先去看一下本地连接详细信息自己的网卡型号是不是Inte I219-V或者Inte I219-LM

0d5c2df2f0f0b0515e39cf2b95fb743d.png

2、因为是要从纯DOS里改写所以要制作DOS启动盘,下载U盘DOS启动盘制作工具(含制作工具文件)

5b64c3adb796f0503af7222a8edee1d0.png

3、插上U盘后,启动UItraISO软件。选择镜像文件后再点打开,点击镜像文件位置,然后双击确认

07eb1d44be8aa79214ada6cf3f081aa1.png

4、然后选择启动后,点击写入硬盘镜像。注意然后先格式化,格式化之后再点写入,等待几分钟,进度完成就好了,记住将写入为USB-HDD+不然U盘启动可能会出错。如果不启动选择便捷启动制作

5、下载纯DOS下运行的硬刷网卡工具eeupdate解压到刚才做好的启动盘根目录

6、重启电脑插入U盘DOS下运行 eeupdate.exe/nic=1 /mac=xxxxxxxxxxxx(原机MAC地址在主板标签上12位数字字母组合)如果报错PMODE/W:A20 Error 删除U盘里的Himem.sys文件重启进入。

<p> <span style="font-size:18px;">深度学习和神经网络隶属于机器学习范畴,但是由于它在行业中应用广泛、研究成果显著,成为当最热门研究领域,因此深度学习就作为一门独立学科被提出来了。</span> </p> <p> <span style="font-size:18px;">本课程使用开发工具为<span style="color:#ff0000;">TensorFlow2.X</span>,如果你刚接触TensorFlow2,“墙裂”建议你从TensorFlow2学起,因为Google团队对其做了<span style="color:#ff0000;">重大调整</span>,它极大降低了开发者学习门槛,更加简单,易用,开发者更多应该关注深度学习算法本身。</span> </p> <p> <span style="font-size:18px;">本课程知识覆盖全面,项目案例丰富,以项目为导向,通过动态图形展现推理过程,深入浅出,从原理到实践均能很快掌握。</span> </p> <p> <span style="font-size:18px;">课程编排如:</span> </p> <ol> <li> <span style="font-size:18px;">神经网络原理(神经元,单层感知器,多层感知器)</span> </li> <li> <span style="font-size:18px;">TensorFlow2.X基础(环境搭建,常用函数,线性回归实现)</span> </li> <li> <span style="font-size:18px;">全连接神经网络(前馈神经网络,全连接神经网络,神经网络搭建,手写数字识别,衣物识别)</span> </li> <li> <span style="font-size:18px;">模型优化(模型复杂度,损失函数,学习率,优化器,图片增强,dropout)</span> </li> <li> <span style="font-size:18px;">CNN卷积神经网络(原理,LeNet5,AlexNet,VGGNet,InceptionNet,ResNet,物品识别)</span> </li> <li> <span style="font-size:18px;">RNN循环神经网络(原理,LSTM,GRU,股票预测)</span> </li> <li> <span style="font-size:18px;">BP神经网络(正向传播,反向传播)</span> </li> <li> <span style="font-size:18px;">实战项目(猫狗大战,人工智能古诗)</span> </li> </ol> <p>   </p> <p> 问:学习本课程需要哪些前置知识? </p> <p> 答:基本Python编程知识,对机器学习线性回归和逻辑回归有简单认识即可。 课程中会专门开辟一章用于讲解TensorFlow2知识,即使没有TensorFlow编程经验,也能快速掌握。 </p> <p> <span style="font-size:18px;color:#e53333;"><strong>注意:</strong></span> </p> <p> <span style="font-size:18px;"><strong><span style="color:#e53333;">全套数据集和实现代码</span>在<span style="color:#e53333;">第一章第一个视频</span>位置载。</strong></span> </p> <p> <span style="font-size:18px;"><strong><span style="color:#e53333;">每章PPT</span>在<span style="color:#e53333;">每章第一个视频</span>位置载。</strong></span> </p>
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页